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Fig. 1. Left: smoke (large) passing a racing car and its vorticity field (small). Right: smoke (large) passing an aircraft with 4 rotating propellers
at a 15-degree angle of attack and its vorticity field (small). The wingtip vortices are captured by our algorithm in the vorticity field. Effective
resolutions are 512 X 512 X 1024 on our adaptive grid implemented on GPU.

We propose the adaptive hybrid particle-grid flow map method, a novel
flow-map approach that leverages Lagrangian particles to simultaneously
transport impulse and guide grid adaptation, introducing a fully adaptive
flow map-based fluid simulation framework. The core idea of our method
is to maintain flow-map trajectories separately on grid nodes and parti-
cles: the grid-based representation tracks long-range flow maps at a coarse
spatial resolution, while the particle-based representation tracks both long
and short-range flow maps, enhanced by their gradients, at a fine resolu-
tion. This hybrid Eulerian-Lagrangian flow-map representation naturally
enables adaptivity for both advection and projection steps. We implement
this method in Cirrus, a GPU-based fluid simulation framework designed for
octree-like adaptive grids enhanced with particle trackers. The efficacy of
our system is demonstrated through numerical tests and various simulation
examples, achieving up to 512 X 512 x 2048 effective resolution on an RTX
4090 GPU. We achieve a 1.5 to 2x speedup with our GPU optimization over
the Particle Flow Map method on the same hardware, while the adaptive grid
implementation offers efficiency gains of one to two orders of magnitude by
reducing computational resource requirements.
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1 INTRODUCTION

Flow map methods have emerged as an effective numerical scheme
for reducing numerical dissipation and preserving fine-scale vortex
structures in recent years. Among these advancements, the Particle
Flow Map (PFM) method [Zhou et al. 2024] achieves state-of-the-art
performance by utilizing the Affine Particle-In-Cell (APIC) scheme
[Jiang et al. 2015] to advect impulse with moving particles on a
background grid. However, despite its notable vorticity preservation
capability, PFM relies on maintaining a dense particle system across
all grid cells to transport the impulse field and its gradients, resulting
in high memory overhead and restricting resolution to a typical
2563 uniform grid.

Adaptive grids, such as Octree or AMR [Aanjaneya et al. 2017;
Ando and Batty 2020; Ando et al. 2013; Berger and Oliger 1984;
Karnakov et al. 2020; Losasso et al. 2004; Popinet 2009; Setaluri
et al. 2014], utilize hierarchical grid structures to allocate grid cells
with different sizes in different regions, thereby significantly reduc-
ing the computational overhead. However, implementing adaptive
grids—particularly on GPUs—remains challenging. For grid-based
systems, the refinement decisions of an adaptive grid rely on heuris-
tics derived from the fluid system, such as the distance to a solid/air
boundary [Aanjaneya et al. 2017; Ando and Batty 2020], or on phys-
ical quantities stored on the grid, such as vorticity strength [Deng
et al. 2023; Hejazialhosseini et al. 2010]. However, calculating these
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quantities, in turn, is based on the grid, making it difficult to design
grid adaptation algorithms. In hybrid particle-grid systems, han-
dling particle-grid interpolation across different refinement levels
can introduce numerical instability and add implementation com-
plexity. Furthermore, adaptive grids have seen limited application
in computer graphics, with few GPU-based adaptive grid fluid simu-
lators available. We identify three primary challenges in this context:
(1) designing a robust and dynamic grid refinement mechanism, (2)
developing advection schemes for flow maps on adaptive grids, and
(3) building an efficient, user-friendly GPU-based adaptive-grid fluid
simulation framework.

In this paper, we propose the adaptive hybrid particle-grid flow
map method, which integrates particles and adaptive grids for fluid
simulation. In our approach, particles perform two tasks: advecting
impulse in key regions and guiding grid adaptation. Specifically,
Lagrangian particles are used to transport the impulse vector in
areas requiring high resolution, ensuring detailed fluid structures
are preserved. Simultaneously, these particles serve as indicators for
refining the adaptive grid, focusing computational resources on re-
gions with complex fluid dynamics. In less critical areas, grid-based
advection is employed to maintain efficiency. By dynamically cou-
pling the particle system with spatially adaptive grids, our method
strikes a balance between preserving fine-scale details and optimiz-
ing computational cost.

For efficient implementation of this algorithm, we present Cirrus,
a GPU-based fluid simulation framework designed to handle high-
resolution simulations up to 512 X 512 X 2048 on consumer-grade
GPUs with hybrid particle-grid flow maps. It constructs a dynamic
octree-like adaptive grid structure, where each grid level is stored
as blocks in a hash table, therefore supporting arbitrary levels of
grid resolution and allowing for dynamic topology modifications.
Through our GPU optimizations, our Cirrus framework achieves
a 2x speedup over PFM on a dense grid and a 1.5X speedup over
PFM on an adaptive grid, both on the same hardware. Additionally,
the adaptive grid strategy allows Cirrus to improve computational
efficiency by one to two orders of magnitude based on effective
resolution. We demonstrate the efficacy of Cirrus by simulating a
range of high-resolution turbulent fluid examples, achieving state-
of-the-art vortical flow simulation results by combining flow-map-
based conservation and GPU parallelism.

2 RELATED WORK

Adaptive Grids. The term adaptive grids refers to a class of tech-
niques that distribute computational grids non-uniformly in space,
allowing for efficient allocation of computational resources. In Com-
putational Fluid Dynamics (CFD), the use of adaptive data struc-
tures, including hierarchical Adaptive Mesh Refinement (AMR) grids
[Berger and Oliger 1984] or octree [Popinet 2009] for fluid simula-
tion, has been a long-established approach. These methods can be
applied to both incompressible flow, [Almgren et al. 1996; Howell
and Bell 1997], compressible flow [Coirier 1994; Hejazialhosseini
et al. 2010; Khokhlov 1998], and two-phase flow [Karnakov et al.
2020; Popinet 2009] simulations. Subsequently, this approach has
also been adopted [Losasso et al. 2004; Shi and Yu 2004] in Com-
puter Graphics. Recent advancements have applied this method to
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simulate various physical phenomena, such as free-surface fluid dy-
namics [Ando and Batty 2020] and elastoplastic materials modeled
with the MPM algorithm [Gao et al. 2017]. Adaptive grids can be
implemented using various data structures, such as tree structures
[Museth 2021; Museth et al. 2013], generalized octrees [Ferstl et al.
2014; Nielsen and Bridson 2016], single-level tiles [Narita and Ando
2022], far-field grid [Zhu et al. 2013], warping grid [Ibayashi et al.
2018], tetrahedral meshes [Ando et al. 2013; Batty et al. 2010; Chen-
tanez et al. 2007], power diagrams [Zhai et al. 2018], and neural
representations [Deng et al. 2023; Kim et al. 2024]. Some codimen-
sion data structures [Deng et al. 2022] can also be regarded as a
form of adaptive grid. In this work, we use an adaptive grid divided
into blocks, a straightforward and efficient data structure [Setaluri
et al. 2014] for fluid simulation that has been widely adopted.

Adaptive Algorithms. Specially designed numerical algorithms
are often required to implement fluid simulations on adaptive grids.
First, dedicated algorithms for adaptive grid generation are nec-
essary, such as refinement criteria based on locations [Klingner
et al. 2006; Losasso et al. 2004; Setaluri et al. 2014], sizing functions
calculated from physical quantities [Ando and Batty 2020; Shi and
Yu 2002] or wavelet transforms [Hejazialhosseini et al. 2010]. In-
terpolation and advection schemes on adaptive grids also need to
be carefully designed [Setaluri et al. 2014]. In particular, if parti-
cle systems are involved, different kernel functions are typically
employed across grid levels to adapt to the varying resolutions,
requiring custom numerical schemes to ensure stability [Gao et al.
2017].

Poisson Solver. A key component of incompressible fluid sim-
ulation is the projection step using a Poisson solver. Matrix-free
multigrid solvers [McAdams et al. 2010] are commonly used to solve
the Poisson equation efficiently. Algebraic multigrid (AMG) meth-
ods [Shao et al. 2022; Takahashi and Batty 2023, 2025] offer faster
convergence, in exchange, the computational cost per iteration is
increased. Implementing such solvers on adaptive grids is itself a
specialized area of research. For solving Magnetohydrodynamics
(MHD) [Teunissen and Ebert 2018; Tomida and Stone 2023] and
two-phase flows [Karnakov et al. 2020; Popinet 2009], specific treat-
ments [Losasso et al. 2006] or high-order interpolation schemes
[Batty 2017; Guittet et al. 2015; Teunissen and Schiavello 2023] are
often employed at T-junctions for higher accuracy. In this work,
we follow the practice of Losasso et al. [2004] that uses constant
interpolation.

Hybrid Particle-Grid Methods. The use of hybrid particle-grid
methods in computer graphics can be traced back to PIC/FLIP [Boyd
and Bridson 2012; Deng et al. 2022; Zhu and Bridson 2005], which
subsequently became widely adopted. We adopt the Affine Particle-
In-Cell (APIC) scheme proposed by Jiang et al. [2015] for hybrid
particle-grid advection, which effectively reduces numerical dis-
sipation. Particle systems, being inherently Lagrangian, are natu-
ral choices for advecting markers and are often used for interface
tracking [Enright et al. 2002; Hieber and Koumoutsakos 2005]. Our
method draws inspiration from NB-Flip [Ferstl et al. 2016; Sato et al.
2018b], which samples particles only near the fluid surface, enabling
accurate and detailed interface tracking. Another important hybrid



particle-grid algorithm is the Material Point Method (MPM) [Jiang
et al. 2016], initially developed for simulating soft bodies but later ex-
tended to a variety of other applications [Gao et al. 2018a; Han et al.
2019]. In this paper, our G2P (grid-to-particle) and P2G (particle-
to-grid) transfers draw inspiration from modern MPM techniques,
especially GPU-MPM [Gao et al. 2018b; Wang et al. 2020].

Flow Map Methods. The history of flow map methods can be
traced back to the characteristic map method in CFD. It was first in-
troduced to fluid simulation by Wiggert and Wylie [1976] to reduce
numerical dissipation using a velocity field-advected long-range
mapping. This method was later adapted to the graphics community
by Hachisuka [2005] and Tessendorf and Pelfrey [2011]. The fol-
lowing research [Sato et al. 2018a, 2017; Tessendorf 2015] typically
utilized a high computation demanding virtual particles method to
track the flow map. Inspired by Kim et al. [2007], Qu* et al. [2019]
later proposed a Semi-Lagrangian-like scheme to advect flow maps
in a bidirectional manner to reduce time cost and improve the map-
ping accuracy. Recently, Nabizadeh et al. [2022] extended this con-
cept to the impulse fluid model [Cortez 1996; Feng et al. 2022]. In
addition to this, Neural Flow Maps (NFM) [Deng et al. 2023] intro-
duced a new backward flow map advection scheme and employed
a neural network to compress the required velocity buffers during
flow map reconstruction efficiently. Zhou et al. [2024] introduced
the concept of long-short flow maps and transported the impulse
on Lagrangian particles with the APIC scheme [Jiang et al. 2015],
achieving state-of-the-art results. Wang et al. [2024] combined the
flow map concept with the vortex method to further improve its nu-
merical stability and physical interpretability. Recent advances have
also explored broader applications of flow maps. Li et al. [2024b]
and Chen et al. [2024] studied particle-laden and solid-fluid inter-
actions on flow maps, respectively. Furthermore, Li et al. [2024a]
developed a Lagrangian covector fluid framework with free surface
support, and Sun et al. [2024] presented an impulse-based ghost
fluid method for handling two-phase flows, enriching the physical
modeling capabilities of flow map methods. In this work, we mainly
follow the PFM and NFM flow map schemes.

GPU-Based Simulation. The parallel computing power of GPUs
enables the efficient implementation of fluid simulations. On dense
grids, GPU-based fluid simulation has become a widely adopted
approach [Hu et al. 2019]. Some fluid simulation algorithms, are
more GPU-friendly, such as the Lattice Boltzmann Method (LBM)
[Kriiger et al. 2017] and wavelet-based techniques [Lichtl and Jones
2015]. LBM, in particular, solves the Boltzmann equations instead of
the Navier-Stokes equations, offering a representation that is well-
suited for large-scale computations on GPUs due to its algorithmic
locality. It has been successfully implemented with adaptive grids on
GPUs [Liu and Liu 2023; Lyu et al. 2018]. Recently, DCGrid [Raate-
land et al. 2022] introduces a GPU-efficient adaptive grid, but lacks
a full multigrid solver, limiting visual fidelity. Despite these develop-
ments, most mainstream implementations of the projection method
for solving incompressible fluids on adaptive grids in Computer
Graphics remain CPU-based. In this paper, our proposed Cirrus
system on adaptive grids achieves a 1.5X to 2X speedup compared
to prior GPU-PFM implementations and significantly outperforms
CPU-PFM.
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3 PHYSICAL MODEL
3.1 Fluid Model

We consider the impulse-form incompressible flow equations with-
out viscosity [Cortez 1996]:
Dm

_ _ T
o = (Vu)" m, )

Vip=V -m.

We define m in (1) as the fluid impulse, a quantity related to the
velocity field u through a scalar gauge variable ¢:

m=u+ V. (2)

Note that u is divergence-free, allowing us to obtain u from m by
removing its curl-free part based on Helmholtz decomposition.

3.2 Flow Map Model

backward:¢/>e), Flbel  forward:g[**], F o

Fig. 2. Forward flow map (¢L%%1, #12b1) (right) and backward flow
map (!0l F1b-aly (left). The physical particle path (left to right) is

ta — 1p.

Flow map is a mathematical model for a particle’s trajectory in
spacetime. Given two time instants a and b, we consider the forward
flow map as the particle’s path from t, to t;, while the backward
flow map as the reverse path from ¢, to t,. In the remainder of this
paper, we assume that ¢, is the start time of the particle path, and
tp is the end time. Superscripts x4, x? stand for particle positions
x(tq), x(tp) at different times.

We use ¢l@P] to represent the (forward) flow map that maps
x% at the beginning of the path to its position x? at the end. It is
formally defined as

la,b](,a
op (x) —u (¢[a,b] (xa), tb) ,

oty 3)
¢[a,a] (xa) = x%.
Here ¢!%¢] = identity is the initial condition. In other words
tp
e =t [Tuglendn @
ta

Swapping the start and end points of the forward flow map yields
the backward flow map $!2al as shown in Fig. 2.
The flow map’s Jacobian matrix Flabl is defined as

oplatl(x)

x4

Flebl (x) = (5)
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3.3 Flow Map Marching

Taking the material derivatives of Eq. 5 with t, and t;, gives us

[ab](ya

DFI ) _ 0ty (@
Dty
[ab](ya

DF PTG _ _rlabl (xaypye, (6b)
Dt,

The detailed derivations are provided in Appendix A.

Eq. 6a implies that starting from the initial conditions ¢[“’a] =x“
and 7124l (x) = I, we can march the endpoint x? of the particle
path by viewing t;, as a variable and performing time integration
on the velocity field with RK4. This process finally yields the flow
map ¢!%P] and its Jacobian matrix 7%t when integrated to t,.

Similarly, starting from the initial conditions ¢[b’b] = x% and
F1bbl(xb) = I, we can march the starting point x¢ of the particle
path by performing RK4 integration viewing t;, as a variable. This
also yields ¢[“’b] and 7 (2P at the end.

3.4 Time Evolution

The impulse field m(-, t,) and its gradient are related to their values
at tq as [Zhou et al. 2024]

m(x, ) = (7104 () migl (<), ), (72)
Vi, 1) = (7104 ()" Im(glPel (<), 1) (7104 (<2))
+9 (7)) m(gl) (), ), (7b)

where the Hessian term V¥ is often omitted without compromis-
ing the quality of the simulation results. Since the gauge variable ¢
does not appear in (3)-(7), we conveniently set ¢ = 0 at t = 0. Thus,
a fluid system can be simulated with flow map advection in Alg. 1,
which is essentially a variant of the classical projection method
[Bridson 2015], however, the p* solved in projection step is the sum
of actual pressure and the gauge variable: p* = p + .

Algorithm 1 Flow Map Fluid Simulation

Input: intermediate velocity fields u?, ..., u"

Output: velocity field 2"
1 m® —ud
2: Calculate ¢pl"+10] and Fn+1.0] > (6)
3. ml — (7:[n+1,0])T m0(¢[n+1,0]) > (7)

4; Solve V2p* =V . m™*!

5. u™ — m"t - vp* > projection

4 ADAPTIVE HYBRID PARTICLE-GRID FLOW MAP

In this paper, we propose a novel implementation of the flow map
method on an octree-like adaptive grid, employing a hybrid particle-
grid scheme for flow map advection. Fig. 3 shows the two main
components of our data structure: an adaptive grid and a particle
system. The particles are sampled around solid objects and will
persist for a duration of time.
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Fig. 3. Our adaptive particle-grid structure. Particles (blue) are gen-
erated near solid objects (pink) and persist for a duration. The grid
(white) refines to the highest resolution in regions with particles. Each
cube corresponds to a tile of 8% cells.

Inspired by the selective use of high-cost schemes in key regions
[Narita and Ando 2022] and the observation by PFM that the particle
system tracking Vm corresponds to shorter flow map lengths and
smaller scales due to its responsiveness to distortions, our algorithm
refines the grid to its maximum resolution in detailed fluid regions.
On other areas which are less critical, we employ the memory-
efficient grid advection.

Naturally, this method provides us a predicate for grid refinement,
i.e., particles. In other words, our particle system performs two tasks:
advecting the flow map and guiding grid adaptation. In regions with
particles, we refine the grid to the highest resolution, as shown in
Fig. 3. By employing particles as refinement indicators, we effectively
circumvent both the dependence of sizing functions on the grid itself
and the sensitivity of interpolation algorithms to grid structure.

Types: [ LEAF | [ INNER | [GHOST |

Level O | 0 |
Level 1 | 0 | 1 |
Level 2 [ 1 T 2 1T 3 ]

Level 3

Fig. 4. A simplified 1-D illustration of the grid structure. There are
three types of tiles: yellow for leaf tiles, gray for inner tiles, and blue
for ghost tiles. The maximum level difference of neighboring leaf tiles
is 1, and a ghost tile is created in such T-junction cases.

4.1 Adaptive Grid

We design our adaptive grid system as a tile-based octree-like struc-
ture. The grid is divided into multiple levels, denoted by an integer
1. Level 0 is the coarsest level, and level L is the finest. The cell size
! at level I is defined as h! = 1/2/3.

Each grid level is divided into 8 x 8 X 8 blocks of cells, referred to
as a "tile". A tile at the coarsest level I = 0 spans a spatial domain of
1 X1 X 1. In our framework, a tile is the smallest unit for memory
management, and the tiles form an octree.



A tile belongs to one of three types: leaf, inner, and ghost.
Leaf tiles are the leaf nodes in the octree, holding active cells for
computation. We use the MAC grid to store physical quantities.
A leaf cell stores three velocity components at its x—, y—, z— face
centers and a pressure p at the cell center. Inner tiles, on the other
hand, are the interior nodes in the octree structure. An inner tile is
the parent of 8 leaf tiles or 8 inner tiles.

We apply a level constraint where the maximum level difference
between two face-sharing neighbor leaf tiles (referred to as neigh-
bors for the rest of this paper) is limited to one. We have found that
this approach is sufficient to ensure a smooth transition between
levels without introducing visible artifacts.

We refer to the case as a T-junction when two neighboring leaf
tiles To, Ty are at levels i and i + 1 respectively (see Fig. 7). In this
case, we create a ghost tile at level i + 1 that is a child of Ty and
adjacent to T;. Ghost tiles are useful to avoid cross-level access and
reduce the computational cost at T-junctions in the Poisson solver,
as we will explain in Sec. 5.4.

Fig. 4 illustrates a simplified 1-D example of a grid with 4 levels.
Notice that the tile(s) at level 0 always span the entire computational
domain. For example, if the computational domain is 1 X 1 X 2, we
will have two tiles (0, 0,0) and (0,0, 1) at level 0.

4.2 Grid Adaptation with Particles

A tile is the smallest unit for grid refinement and coarsening in our
adaptive grid. It can only be refined as a whole, generating 8 child
tiles, or coarsened with its 7 siblings together, making their common
parent a new leaf tile.

Our grid adaptation algorithm relies on a level target function
F(T) for atile T, that satisfies F(T) = max{F(C) : C is a child of T}.
In our hybrid particle-grid method, it’s defined as

L, if T contains a particle,
F(T) = { P ®)

0, otherwise.

However, the grid adaptation algorithm itself can be generalized
to other choices of F. It guarantees that level(T) > F(T) and the
1-level constraint is not violated.

For refinement, A leaf tile T at level i must be refined if:

(1) F(T) > i, or

(2) There is a leaf neighbor of T at level i + 1 that will be refined.
Coarsening follows a similar principle but is more complex because,
in addition to the level constraint, 8 sibling leaf tiles must negotiate
through their parent to decide whether they should be coarsened
or not. A leaf tile T should be deleted if

(1) Its level i > F(T), and

(2) All its siblings should be deleted, and

(3) There is no same-level neighbor S that is an inner tile and

will not become a leaf.

A ghost tile G is deleted if its parent leaf tile is deleted, or all its leaf
neighbors are deleted, making it no longer necessary.

The refinement and coarsening algorithms are given in detail in
Appendix B. Note that both algorithms will add or remove only
one level to the grid. Therefore, an iterative process is required
to dynamically adjust the grid topology, as shown in Alg. 2. We
demonstrate a simple example of grid adaptation in Fig. 5.
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Algorithm 2 Dynamic Grid Adaptation

Input: adaptive grid G, maximum level L, level target function F
1: while true do
2: N « RefineStep(G, L, F)
if N =0 then
break
while true do
N « CoarsenStep(G, L, F)
if N =0 then
break

> Algorithm 5

> Algorithm 6

4.3 Hybrid Flow Map Advection

For particle advection, we adopt the long-short flow map in PFM,
that each particle carries m and Vm. The impulse m is calculated
with a k-step long flow map where k = 5 in our simulations, while
Vm is calculated with a 1-step short flow map.

Suppose we’re currently evolving the fluid system from time step
i to time step i + 1 and the flow map is initialized at time step ig. We
take t, = igAt, to = iAt and tj, = (i + 1)At. The impulse m? and its
gradient Vm? of a particle are forward-advected with Eq. 7:

mb = (7_~[b,a])T me,

T ©
Vi = (1061) we (18e1).

Eq. 9 is calculated with Eq. 6b. The values u, Vu, m, Vi required
by the RK4 marching are calculated with the quadratic kernel in-
terpolation [Jiang et al. 2016] on the grid. The kernel has a radius
of 1.5h, which means it uses a 3 X 3 X 3 stencil. Since particles only
reside on the finest level, this G2P transfer, or particle advection, is
essentially the same as G2P on a uniform grid.

After G2P, the impulse field is transferred back to the grid with
the APIC P2G scheme. In regions not covered by particles, we use
Eq. 6a to calculate the impulse (7a) at grid face centers. Here, we
must handle the cross-level cases when performing the quadratic
kernel interpolation. First, we linearly interpolate [Setaluri et al.
2014] the velocity at the face centers of all inner cells. Then, starting
from the finest level L, if the 3% stencil is fulfilled with leaf and
interior cells of this level, we use the kernel interpolation results
from this level. Otherwise, we fall back to the coarser level L — 1,
L — 2, and so on, until the stencil is satisfied or the coarsest level is
reached.

To compute Eq. 6a on the grid, we store k grids as the velocity
buffer. Additionally, for each newly sampled particle, we backtrace
it to t, using Eq. 6b to align its flow map length with that of the
other particles.

Fig. 6 illustrates the hybrid flow map advection scheme used by
us. In regions with particles, we use Lagrangian particles to advect
the flow map. In other regions, we use grid-based advection.

5 GPU IMPLEMENTATION

To efficiently implement the hybrid particle-grid flow map algorithm,
we have developed Cirrus, a fluid simulation framework that utilizes
adaptive grids and a multigrid solver on consumer-grade GPUs.
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Refine: (R for refinement flag)

l | | | |

I T e N N D I e O

[IRIR! (LT

LT T]

m oI

Coarsen: (D for deletion flag and C for coarsen flag)

l | | | |

O

| —[cT 1—[CT 1—[C1T1]
DD (DD DDD!

Fig. 5. Top: an 1D illustration of grid refinement. The refinement flag is calculated and propagated to satisfy the neighbor level constraint. Ghost
tiles are generated in the end. Bottom: a 1D illustration of grid coarsening. Both leaf tiles must be marked with a deletion flag to delete them
simultaneously, which is guaranteed through their parents’ coarsened flag. Ghost tiles that lose all neighboring tiles are also deleted.

Fig. 6. Our adaptive hybrid particle-grid flow map algorithm. Parti-
cles (bottom line) only reside on the finest level, while the grid flow
map advection (top line) may cross multiple levels. They calculate the
same flow map ¢122l, Flbal,

In addition to the hybrid particle-grid approach, it also supports
traditional advection schemes like semi-Lagrangian.

5.1 Grid Storage

In our grid, tile entries, which store single precision floating point
data, are maintained using a hash table-based approach inspired by
Instant-NGP [Miiller et al. 2022]. Each level has its own hash table,
using tile indices as keys and the hash function:

hash(i,j,k):((i~f1 ®j fok-f;) mod 2M),

where fi = 1, fo = 2654435761, f3 = 805459861, and @ is bitwise
XOR. Unlike Instant-NGP, we employ a linear probing technique to
guarantee that each tile has a unique entry and allows tile deletion.
The hash table size is set to M=18 in the finest level and M = 16 for
all other levels.

To perform linear interpolation introduced by SPGrid [Setaluri
et al. 2014], each tile is allocated space for 93 = 729 elements to store
data at the nodes (cell corners). Each tile contains m data channels,
so its data structure is an m X 729 array, similar to the AoSoA
design [Wang et al. 2020]. Data within each channel is organized in
lexicographical order.

CUDA kernels are typically launched with a block size of 128 to
maximize SM utilization. Computationals are repeated four times to
cover the tile, with thread i is processing cells {i, i+128, i+256, i+384}.
To launch kernels on multiple tiles, we collect all the tile entries
at each level into a single array whenever the tiles are added or
removed. This gathering operation is performed after each time
the grid structure is modified. We also cache the pointers to six
neighboring tiles to improve the efficiency of local accesses.
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For computation of the level target (maximum value) and dot
product (summation), reduction operations are performed across
the data within each tile. These reductions are implemented using
the NVIDIA CUB library.

5.2 G2P Transfer

In Cirrus, particles are generated in the region where the distance
to the nearest solid object is less than a threshold ¢, = 5Ax. If
a fluid cell inside the generation region doesn’t contain particles,
we randomly generate 8 particles inside. In implementation, we
first count the number of particles to be generated for each cell,
generate them on the CPU, and copy them back to GPU memory.
Since the number of particles generated in each step is relatively
small, this approach does not significantly impact the simulation’s
overall performance.

We have designed a particle extinction mechanism to allow for
a trade-off between simulation performance and computational
overhead. A particle is removed if any of the three conditions are
met:

(1) G2P fails because some of the finest-level values in the kernel
interpolation stencil are missing.

(2) It enters a non-fluid grid cell, e.g., wall boundaries.

(3) When a particle’s lifetime exceeds a predefined threshold L.

Larger values of the particle life £ increase the number of cells
and particles, which in turn allows vorticity to persist for a longer
duration due to improved preservation in high-resolution, particle-
advected critical regions. Given our hardware limitations, a typical
maximum value for £ is 0.5. Since the vortex structures in smoke
originate at solid boundaries and are independent of the vorticity
field further away, the length of £ does not significantly affect
smoke simulation results. As long as £ is of sufficient length to
generate the initial vorticity field, the visual outcome for smoke re-
mains consistent. The impact of varying particle lifetimes is further
explored in Sec. 8.1.

In order to optimize G2P transfer utilizing shared memory, we
employ histogram-sorting [Gao et al. 2018b] to create sorted lists
of particles within each tile. First, the number of particles within
each cell is counted by atomic add, then the prefix sum of particle
numbers is calculated within and across tiles.

We launch a CUDA block with 128 threads to process all particles
within each tile. Suppose we have a tile with x index ranging [0, 8),
thus the spatial range of particles inside it may span [0, 8h]. We set
the CFL number to 0.5 in our simulations, therefore, the particles
will be contained in [—0.5h, 8.5h] during the G2P step. Consider-
ing the kernel radius r = 1.5k in Sec. 4.3, the access range of the



Algorithm 3 Full Approximation Scheme (FAS) V-Cycle

Input: grid G, maximum level L, divergence b, initial guess u = 0
Output: approximate solution of Au =b

1: Downstroke:

2: for =L to1do

3 u! — Smooth(ul, b)) > On leaf and inner tiles
4 rl— bl — Aul > On leaf, inner and ghost tiles
5 b1 — Restrict(rl) > Restrict to leaf and inner tiles

6: u® «— Smooth(u?, b°)

7. Upstroke:

8: for/=1to L do

9 u! — u! + Prolongate(u

10: u! — Smooth(ul, b))

-1y > Prolongate to all tiles

> On leaf and inner tiles

kernel interpolation spans (—2h, 10h). Since we’re using the MAC
grid, spatial coordinate x may correspond to face center index x/h
(same-axis) or x/h — 0.5, therefore, the index access range becomes
(—2.5,10), with 12 integers inside it. We therefore create a 3 X 123
shared buffer for the velocity data of 123 cells, which is loaded
once from the global memory at the beginning of the CUDA block.
Then the G2P function is performed entirely in shared memory,
maximizing the memory access efficiency.

5.3 P2G Transfer

As the inverse operation of G2P, the APIC P2G scheme scatters the
impulse m calculated with particles’ m, Vm back to the grid at the
finest level L. At a face center node i, the P2G transfer will calculate
a weighted impulse component s; and a weight sum w;. If w; < 1—¢
for a threshold ¢ = 1073, we consider that the P2G transfer has
failed at this grid node, and the grid flow map is applied instead.
Otherwise, the corresponding impulse component is calculated as
m; = Si/ Wwij.

We also use particle-sorting and shared memory techniques to op-
timize the process. Without particle movement, the spatial range of
the interpolation kernel becomes (—1.5h, 9.5h), and the index access
range becomes (—2h, 9.5h), with 11 integers inside. We therefore
create a 6 X 113 buffer in shared memory for 113 cells’ s; and w;.

Gao et al. [2018b] also suggests that the majority of conflict cases
occurs within warps. In order to reduce warp-level conflicts, we use
their warp-level operations in the P2G transfer. Since our particles
are sorted, the particles within each warp interacting with the same
cells are contiguous. As suggested by them, we use a warp-level
__shfl_down function with doubling strides to sum the values of par-
ticles targeting the same cell in the same warp, effectively replacing
the expensive atomic operations.

5.4 Poisson Solver

We implemented a Poisson solver on GPU for the adaptive grid to
perform projection. The projection step in fluid simulation requires
solving a linear system V2p = V - u on an adaptive grid. To ensure
consistency across T-junctions in the adaptive grid, we employ the
integral form of the Laplacian operator, which represents the fluxes
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Fig. 7. Laplacian operator at T-junction. Dotted lines draw two ghost
cells in leaf cell 0, and their pressures are set to py. Cell distances are
set to Ag1 = Ao = 1.5h and A1z = h in computation. The fluxes
from po — p1 and po — p are temporarily saved at ghost cells and later
accumulated to their parent.

through all faces:
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Here, Cy is the h® cube occupied by leaf cell I, and N} represents
its leaf neighbors. The distance between cell centers Ay j equals h
if both cells are at the same level. Sy is the fluid area on the face
between I, J, which is h? if both cells are full of fluid.

At T-junctions, where a leaf cell I is at level [ and its neighboring
cell J is at level [ — 1, we assume that the pressure p; remains
constant throughout the entire volume of Cj following Losasso et al.
[2004]. And Aj j is set to 1.5h, the average distance between the two
levels, following Setaluri et al. [2014].

We use ghost cells to eliminate the need for cross-level access
at T-junctions by the Laplacian operator. The pressure values in
ghost cells are set equal to their leaf parents. Suppose a leaf cell I
at level i has a neighboring leaf J at level i — 1. Instead of directly
accessing J, cell I interacts with the ghost children of J when calcu-
lating (10). Conversely, these ghost children temporarily store flux
sums with I, which are later aggregated into J. Fig. 7 illustrates the
Laplacian operator at a T-junction. Note that we have also provided
the numerical scheme for calculating Vp in this way.

To solve the Poisson equation on an adaptive grid, we employ the
MGPCG algorithm [McAdams et al. 2010; Shao et al. 2022], where a
multigrid solver is used for preconditioning. In our implementation,
the relative tolerance threshold is set to 107, On adaptive grids,
the multigrid algorithms become the so-called Full Approximation
Scheme (FAS) [Popinet 2003; Teunissen and Ebert 2018], as summa-
rized in Alg. 3. It slightly differs from the standard multigrid method
on uniform grids. For example, the commonly used prolongation co-
efficient @ = 2 does not align with the discretized Laplacian operator
at T-junctions on an adaptive grid.

We use a red-black Gauss-Seidel algorithm for smoothing, with 1
red+black iteration before and after each level and 10 iterations at
level 0. The smoothing operator considers only same-level neigh-
bors, as T-junctions are handled using ghost cells. For a leaf cell I at
level I with a ghost child J at level I + 1, the ghost cell J is excluded
from smoothing during the downstroke pass, thus ut*! = 0. How-
ever, the ghost cell J accounts for its leaf neighbors when computing
the residual /. This mechanism propagates results from level [ + 1
to level I at the T-junctions. During the upstroke pass, we effectively
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make u}“ = ué, based on the principle that the ghost value equals
its parent’s value.

We use shared memory to optimize the Laplacian and smoothing
operators in the Poisson solver, as our Laplacian operator only
accesses same-level cells by utilizing ghost cells to store temporary
values. We launch a block with 128 threads to process a tile. It reads
10 cell values to a shared buffer at the beginning for later access.

Due to the presence of the gauge variable ¢, free-surface boundary
conditions (p = 0) cannot be directly applied in the flow map fluid
simulation. Therefore, we apply solid boundary conditions at level
I =1 on all six sides of the computational domain, ensuring planar
solid boundaries.

Algorithm 4 Adaptive Particle-Grid Flow Map Time Evolution

Input: flow map length k, total time steps N
1: fori < 0to N do

2: te «— iAt t, «— (i+1)At > Sec. 5.2
3 Generate new particles

4 if i mod n = 0 then

5 tq «— iAt

6: m? — u®, F1%al 1 for all particles

7 else

8 Compute m?, 7241 for new particles

9: Calculate Vm® for all particles

10: Advect particles and F 124

11 Remove invalid particles

12: Dynamically adjust the grid > Alg. 2
13: Transfer m? to the grid with APIC > Sec. 5.3
14: for all grid cells not processed by particle flow map do

15: Calculate m¢, Flb-al > Eq. 6a
16: mb = (T[b’“] )T m*

17 Solve VZp* =V . m?

18 utl — mb - Vp* > Sec. 5.4

6 TIME INTEGRATION

We summarize our time integration algorithm in Alg. 4. A time
step begins with particle generation and G2P transfer, then the grid
is dynamically adapted to fit the newly advected particle. P2G is
performed consequently to calculate m on the grid. For the grid

nodes not processed by P2G, we use grid-based flow map advection.

Finally, we project m to make it divergence-free, obtaining the
velocity field of the next time step.
7 VALIDATION

7.1 Numerical Accuracy

We validate the accuracy of our advection scheme and Poisson solver

on an adaptive grid spanning [0,1]? that is refined at the center.

Specifically, the level target function is defined as

I 2, if (0.5,0.5,0.5 T
F(T)={0+’ if (0.5,0.5,0.5) € T, (1)

lo, otherwise,
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Fig. 8. Accuracy of flow map advection on adaptive grids with dif-
ferent resolutions. Numbers are the convergence orders fitted by least
squares.

where Iy is the root level. We tested with lp = 2,. .., 5, corresponding
to finest cell sizes 1/128,...,1/1024.

Advection. The equivalence of Eq. 6a and Eq. 6b is validated on a
3D deformation velocity field [Mari¢ et al. 2020]

u(x,y,z,t) =2 sin® (7x) sin(27my) sin(27z) cos (nt/Ty),
o(x,y,z,t) = —sin(27x) sinz(ﬂy) sin(27z) cos (t/Tp), (12)
w(x,y, 2z, t) = —sin(27x) sin(27y) sin?(nz) cos (nt/Ty),

with Ty = 3. We randomly sample 1M points in the grid and advect
5 time steps of At = 1/1024 each, therefore t; = 0,1, = 5At. We
first use Eq. 6a to advect particle x; to xf.’ along with ﬁ[a’b], and
then use Eq. 6b to advect it back to x;, calculating the same Jacobian
matrix in the opposite directions. The position error is defined as the
maximum error between the original x; and the position that has
been advected forward and back, and the Jacobian error is defined
as the maximum Frobenius error between two Jacobian matrices.

Fig. 8 shows the advection errors on different grid resolutions.
The results demonstrate that our advection scheme achieves second-
order convergence and approaches single-precision floating-point
machine precision at a finest cell size of 1/512. On the other hand,
it consistently approaches machine precision on a uniform grid,
indicating that the primary source of the error originates from level
switching near T-junctions.

Poisson Solver. To assess the accuracy of our MGPCG solver, we
solve a Poisson system with all Neumann boundary conditions,
where the solution is a known analytical function [Tomida and
Stone 2023]

2 2 2\~
fﬁayz)=—4nGA((%§) +(%§) +(%§)

. (2nx\ . (2my\ . [27mz
X sin | — | sin [ —= ] sin [ — | + ¢o,
Ly Ly L,

where Ly =Ly =L, =G =A=1and ¢ = 0.




We refer to the grid defined by (11) as Grid A. Additionally, we
tested a more complex Grid B, defined similarly to (11) but only
refines to level Iy + 2 when tiles intersect a spherical shell cen-
tered at (0.5,0.5,0.5) with a radius of 0.25. The results, shown in
Fig. 9, indicate that our solver achieves second-order accuracy on
the simpler Grid A, while exhibiting first-order accuracy on the
more complex Grid B. To address the reduced accuracy on Grid B,
we also evaluated the approach suggested by Losasso et al. [2006],
which computes fluxes at T-junctions using coarser-level cells. This
is equivalent to setting the flux across four smaller faces to their
average value. The results of this averaging scheme are denoted
as Avg in Figure 9, demonstrating second-order accuracy on both
grids. For comparison, we also tested a uniform grid, under which
both algorithms reduce to a standard second-order accurate multi-
grid. Table 1 compares the number of iterations required for both
algorithms to converge to a relative error of 107%. As shown, the
averaging scheme can lead to an increased number of iterations.
Therefore, we retain our original method as its order of accuracy
suffices to produce plausible simulation results

Uniform(2.02)
10-5 |-| —®— Ours A(1.90)
—e— Ours B(0.94) \\
—e— Avg A(1.97) AN
Avg B(1.76

L T I | | B
1/32 1/64 1/128 1/256

Fig. 9. Errors of MGPCG solvers on different grids. Numbers are the
convergence orders fitted by least squares. Avg represents the averaging
scheme [Losasso et al. 2006] at T-junctions.

Error to Analytical Solution

Table 1. Iterations for MGPCG solvers to converge to 10~° relative error.

‘ Root Cell Size
| /32 1/64 1/128 1/256

Uniform | 11 14 18 23
Ours A 11 15 18 23
Ours B 11 15 19 24
Avg A 17 22 25 28
Avg B 31 36 49 577
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Table 2. Comparison of our G2P and P2G operations with naively imple-
mented versions (no use of shared memory). The G2P transfer time includes
interpolating Vm and one flow map advection step. The P2G transfer time
includes calculating Eq. 9 and scattering m to the grid with APIC.

Naive Ours Speed-up
G2P time 115ms 14ms
G2P throughput 139.13M/s  1142.86M/s 8.21X

P2G time 74ms 39ms
P2G throughput 216.22M/s  410.26M/s 1.90%

7.2 Time Efficiency

To analyze algorithm performance across varying grid resolutions,
we introduce the metrics of cell throughput and particle throughput
as measures of efficiency. For adaptive grid methods, we calculate
two types of voxel throughput: active and effective. Active voxel
throughput measures the processing rate of active leaf cells, whereas
effective voxel throughput is determined by the effective resolution.
All our runtime statistics are obtained on a desktop equipped with
an RTX 4090 GPU and an Intel i9-14900KF processor.

G2P and P2G Transfer. Table 2 compares our optimized G2P and
P2G transfers with naively implemented methods on the grid (11)
with root level 0 and finest level 6. The G2P runtime measures the
efficiency of our monolithic CUDA kernel consisting of interpolating
Vm and one flow map advection step. Similarly, the P2G runtime
includes the calculation of Eq. 9 and impulse scattering with the
APIC scheme in a monolithic CUDA kernel.

Table 2 shows that our optimized G2P transfer achieves 8.21x
speed up against the naively implemented baseline. This is because
the G2P process, especially RK4 advection, requires accessing a
large amount of grid data. The use of shared memory significantly
reduces the number of global memory accesses in this process. P2G
also achieves a 1.90x speedup, attributed to the utilization of shared
memory and warp-level operations.

Table 3. Comparison of efficiency with simulation throughput. The pro-
jection column refers to the active voxel throughput of the Poisson solver,
while the active and effective columns refer to the voxel throughput per
time step of the simulator. The Poisson solver runtime of Taichi [2019]is
taken from Table 1.

Method Cells Projection Active Effective
SPGrid 135M 0.26M/s 0.23M/s 3.56M/s
Taichi[2019] 16M 14.16M/s - -
PFM (GPU) 2M 24.39M/s 7.04M/s —
PEM (CPU) M 5.97M/s  0.36M/s -
UAAMG 89.41M 41.59M/s 10.23M/s —
Ours (PFM) 2M 90.90M/s  15.87M/s -
Ours (sphere)  1.60M  133.33M/s  10.32M/s 825.81M/s
Ours (aircraft) 21.49M  36.42M/s  11.65M/s 168.78M/s
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Fig. 10. Sphere scene with different refinement strategies. Top left:
ous (fully adaptive grid). Top right: dense PFM. Bottom left: 2-level
adaptivity. Bottom right: 3-level adaptivity. The checkerboard pattern
represents the grid structure, each square corresponds to an 8> tile.

Projection and Simulation. Table 3 compares the efficiency of
different algorithms. The runtime data is taken from the follow-
ing sources: SPGrid [2014], reported in Table 3 (smoke flow past a
sphere); GPU and CPU versions of PEM [2024], evaluated by run-
ning their 3D leapfrog case on a 128> grid on our machine; and
UAAMG [2022], from Table 4 (river fall). We report the sphere case
on dense and adaptive grids, and the aircraft case in Sec. 8 for our
time statistics. The grid adaptivity and grid advection are disabled
for the dense sphere case, following the original PFM setup.

On the same hardware configuration, our optimized implemen-
tation of the original PFM on a dense grid achieves a 2x speedup
compared to GPU-PFM, and our full algorithm on the adaptive grid
demonstrates a 1.5X speedup over GPU-PFM. Moreover, by employ-
ing our adaptive grid approach, we achieve another efficiency gain
of one to two orders of magnitude in effective resolution throughput.

8 RESULTS

In this section, we present the simulation results. All vorticity fields
are visualized directly using volume rendering. Smoke is visualized
through a volume rendering of passively advected smoke particles.
Detailed runtime statistics are reported in Table 4.

8.1 Ablation Tests

We employ a sphere scene to conduct ablation tests on various
configurations of our algorithm. In this test, we placed a small sphere
with a diameter of 0.1 in a computational domain [0, 1]3, centered
at (0.5,0.5,0.3). The inflow and outflow boundary conditions are
u=(0,0,0.4).

Comparison with PFM. The top row of Fig. 10 compares our
method (left) with our implementation of PFM on a 128> dense
grid. By utilizing adaptive grids, we achieved a 5123 effective resolu-
tion with a time cost similar to PFM, capturing significantly richer
fluid details.

Number of Levels. The bottom row of Fig. 10 shows the results of
using only 2 or 3 levels for grid adaptivity. It can be observed that
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the results are similar to our method with full adaptivity, but the
runtimes increased due to increased cell counts.

Fig. 11. Sphere scene with different configurations. Top row: smoke
visualizations of particle life 0.5 (left) and 0.25 (right). Middle row:
vorticity visualizations of particle life 0.5 (left) and 0.25 (right). Bottom
left: Semi-Lagrangian advection. Bottom right: 10 Jacobi iterations.

Particle Life. The top two rows of Fig. 11 compares particle life
L = 0.5 (left) and 0.25 (right). We can observe that they produce
similar smoke results, but vorticity fades sooner with shorter L.
The reason is that the smoke’s vortex structure is generated at solid
boundaries, and even after the velocity field dissipates, its shape
still remains.

Semi-Lagrangian. The bottom-left image in Fig. 11 is the result
using Semi-Lagrangian advection, showing smooth laminar flow.

Projection with Jacobi iterations. The bottom-right image in Fig. 11
shows the result using 10 Jacobi iterations instead of the full MGPCG
solver, exhibiting visible artifacts due to the compressible velocity
field.

Overall, both our flow map advection scheme and MGPCG solver
on adaptive grids are necessary to produce a turbulent fluid with
rich vortex details.

8.2 Solid Boundaries

We demonstrate our algorithm’s ability to handle solid interactions
and complex meshes using two classic test cases: the delta wing and
the racing car.

Delta Wing. In Fig. 12, we position a delta wing at a 30-degree
angle of attack in a flow boundary condition (0,0, 1). The com-
putational domain spans 1 X 1 X 2 with an effective resolution
512 X 512 X 1024. The length of the delta wing along the z-axis is
0.6. As shown, rich vortex structures of multiple scales form along
the edges of the delta wing, and roll upward, clearly exhibiting the
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Fig. 12. Vorticity (top) and smoke (bottom) of the delta wing simula-
tion. The vorticity structure with multiple scales is clearly shown on
top of the delta wing.

vortex lift effect [Délery 2001]. By employing an adaptive grid, we
achieved a high resolution that successfully captured these intricate
small-scale vortex structures.

Racing Car. We used a racing car model [Sketchfab 2023] to
demonstrate our algorithm’s capability to handle the interaction
between fluid and complex meshes. The computational domain is
also 1 X 1 X 2 with effective resolution 512 X 512 x 1024. The in-
flow and outflow are u = (0,0, 1) and the length of the car is 0.9 in
the z-axis. Volume rendering visualizations of vorticity and smoke
demonstrate that our algorithm can handle complex meshes and
produce rich flow details.

8.3 Moving Objects

Flamingo Flock. We used the Blender software [Soni et al. 2023] to
create a particle system consisting of animated meshes of a flamingo
[Contributors 2023] where the flamingo models flap their wings to
simulate a flying flamingo flock. The flamingos flew a long distance
as our effective resolution spans 512 X 512 X 2048. We visualize the
vorticity and the grid structures of the first and last frames in Fig. 14.
This example demonstrates that by employing an adaptive grid,
our algorithm is capable of covering a large computational domain,
allowing objects to undergo long-range motion while dynamically
updating the grid structure as needed. This ensures the continuous
capture of the rich vortical structures generated by the solid objects.

Aircraft. Figure Fig. 15 shows an aircraft model [NASA Airborne
Science 2025] in flow (0,0, 1) with 4 rotating propellers at a 15-
degree angle of attack. The effective resolution is 512X 512X 1024 in

£ 3

Fig. 13. Racing car, vorticity (top) and smoke (bottom,).

a computational domain 1x 1% 2, and the length of the aircraft is 0.9.
It demonstrates that our algorithm can efficiently simulate moving
small objects and effectively reproduce physical phenomena such
as wingtip vortices.

Bat. In Fig. 16, we further demonstrate the capability of our algo-
rithm to handle the motion of complex meshes. We simulate a bat
flapping its wings and visualize the resulting vorticity field. Even for
such a complex mesh, our algorithm produces realistic simulation
results with intricate vortex structures.

9 CONCLUSION
9.1 Discussion

In this work, the particle system serves a dual purpose: advecting
the impulse field and guiding grid refinement, thereby enabling an
innovative implementation of the flow map method on adaptive
grids. Furthermore, we developed Cirrus, a novel GPU-based fluid
simulator designed for adaptive grids, achieving large-scale simula-
tion on consumer-grade GPUs. Through a series of numerical tests
and simulations, we validate the accuracy, efficiency and quality of
our method, demonstrating its ability to produce highly realistic
results, capture fine-scale vortex structures, and simulate the free
motion of small objects within large computational domains.

Connection to Previous Works. Several concepts related to adaptive
flow maps have already been introduced by previous works. NFM
[Deng et al. 2023] employed an adaptive octree grid for storing the
velocity buffer but used dense grids for other parts of the algorithm.
Narita and Ando [2022] allocate sparse tiles on a dense grid to
reduce the computational cost of flow map tracking. PFM [Zhou
et al. 2024] introduced the concept of long-short flow maps, where
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Fig. 14. Top row: a flamingo flock at frame 1 (left) and 400 (right), visualizing the vorticity field. The camera moves with the object to better
showcase the vortex structure in the wake of the bird flock. Bottom row: the leaf tiles of the octree grid, drawn with wireframes and particles (blue).
To better illustrate the hierarchical structure of the grid, we fixed the camera position. The bottom row data is taken from a 256 X 256 X 1024
simulation, as the tiles in the original data were visually too dense. Each cube corresponds to an 8° tile.

Fig. 15. Aircraft with 4 rotating propellers, visualizing vorticity (left) and smoke (right). Note the clear wingtip vortex tubes behind the wings.

a long-range flow map is used to compute m (7a), and a short-range
flow map is used to compute Vm (7b), as the latter is more sensitive
to flow distortions. This approach can be seen as a form of temporal
adaptivity; however, it relies entirely on dense grids. Our adaptive
hybrid particle-grid flow map is the first fully adaptive flow map-
based fluid simulation framework.

Spatial Adaptivity. Spatial adaptivity is important in our algo-
rithm. For a grid-based flow map, each cell needs to store 5 channels

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

for projection [McAdams et al. 2010] and 5 X 3 channels for the
velocity buffer (assuming a flow map length of 5 steps), totaling
20 floating-point numbers per cell. For PFM, each particle requires
storage for position, impulse, and impulse gradient matrix, amount-
ing to 15 floating-point numbers. The highest effective resolution of
our simulations was 512 X 512 X 2048. Using a dense grid at this res-
olution would result in a memory cost of 40 GB, while the memory
cost for particles would reach 240 GB, far exceeding the capacity of
our RTX 4090 GPU. As demonstrated in Sec. 8.1, our adaptive grid
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Fig. 16. A bat flapping its wings, with the vorticity field visualized. Frame 125 (left) and 500 (right).

Table 4. Statistics of one time step for different simulation scenes. All data are recorded at the last time step. Particle sorting times are included in G2P and
P2G. Values in parentheses represent the ratio of effective resolution to the actual active leaf cell count.

Scene Effective Resolution L Leaf Cells Particles G2P P2G  Grid Adv Projection  Total

Sphere (PFM) 128 X 128 X 128(1X) 0.5 2.00M 14.00M  26ms  43ms — 18ms 126ms
Sphere (2 levels) 512 X 512 X 512(7.56X) 0.5 16.93M 2.27M 5ms 8ms 2898ms 181ms 3328ms
Sphere (3 levels) 512 x 512 X 512(39.58%) 0.5 3.23M 2.30M 5ms 8ms 174ms 30ms 344ms
Sphere (short £) 512 %512 % 512(39.58%x)  0.25 1.21M 1.44M 3ms 5ms 28ms 11ms 105ms
Sphere 512 X 512 X 512(80.17x) 0.5 1.60M 2.31M 6ms 10ms 30ms 12ms 155ms
Aircraft 512 X 512 X 1024(11.92x) 0.5 21.49M 48.32M  115ms  234ms 560ms 590ms 1845ms
Delta Wing 512 X 512 X 1024(8.68X) 1.0 29.50M 28.08M 71lms  151ms 1650ms 468ms 2743ms
Racing Car 512 X 512 X 1024(12.66X) 0.5 20.22M 38.41M 98ms  202ms 1704ms 255ms 2533ms
Flamingo 512 X 512 X 2048(20.89x) 0.4 24.51M 41.55M 97ms 185ms  2176ms 253ms 3012ms
Bat 512 X 512 X 1024(17.80X) 0.5 14.38M 17.88M 42ms 75ms 964ms 160ms 1436ms

system exhibits clear efficiency advantages over both dense grids
and simulations employing only 2 or 3 levels of adaptivity, without
compromising simulation quality. This spatial adaptivity enables
our proposed Cirrus system to handle large computational domains,
as illustrated in our flamingo flock example.

Hybrid Particle-Grid Method. We use a hybrid particle-grid system
to solve the fluid, although pure grid-based systems are also a com-
mon method for simulating fluids on adaptive grids [Aanjaneya et al.
2017; Setaluri et al. 2014]. Our algorithm also supports advection
solely on grids; however, we still choose the hybrid particle-grid ap-
proach, mainly for three reasons. First, the adoption of the impulse
gradient in PFM effectively reduces numerical dissipation, which
requires a particle system using APIC interpolation. Second, our
P2G and G2P operations are straightforward to optimize on the GPU
because particles reside at the finest level, and the distance a particle
can move in a time step is limited by the CFL number. However, the
long-range flow maps computed on the grid inherently disrupt data
locality, making them challenging to optimize and computationally
expensive. Third, purely adaptive grids often struggle with defining
a sizing function. Especially, the advection of time step i+ 1 requires
a pre-allocated adaptive grid, yet defining the sizing function ideally
depends on the physical quantities at step i + 1. In our algorithm, we
easily solve this by using particles as the grid’s refinement indicator.

Multi-Level PFM. Theoretically, it is possible to further improve
the simulation quality on coarser levels by placing particles at dif-
ferent refinement levels and using the Particle-Flow Map (PFM)
advection. However, this approach would increase the memory
overhead and require designing complex interpolation schemes at
T-junctions to avoid numerical instability [Gao et al. 2017]. By re-
stricting particles on the finest level, we successfully ensure the
simplicity and scalability of our G2P and P2G algorithms.

9.2 Limitations and future works

Lack of full temporal adaptivity. Currently, we use a long-short
flow map mechanism, where m and Vm are computed at different
lengths. However, this is not full temporal adaptivity. Both small
and large grid cells share the same flow map length and unified
time step. Although the simulation is dominated by the smaller cells,
theoretically, using different time steps for small and large cells
could further optimize computational efficiency. Future work will
explore spatiotemporal adaptivity.

Cross-level discontinuity. Our adaptive flow map advection scheme
will fall back to coarser levels when some values in the stencil are
missing, resulting in higher cross-level advection errors compared
to same-level advection. This introduces numerical discontinuities
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at T-junctions and may lead to significantly weaker vorticity preser-
vation compared to the particle flow map, causing the length of solid
wake vortices to depend on particle lifetime. We aim to develop new
numerical schemes to enhance the accuracy of grid-based flow maps
in the future.

T-junction treatment. Our current approach employs constant
pressure interpolation at T-junctions and is presently limited to
voxelized solid boundaries. While straightforward to implement
and optimize on a GPU, this method exhibits reduced accuracy
compared to higher-order interpolation techniques or body-fitting
tetrahedral meshes, particularly on complex adaptive grids where
it can degrade to first-order convergence. Although this accuracy
limitation did not significantly impact our smoke simulations, it
may introduce artifacts in scenarios involving free surfaces. Fur-
thermore, it demonstrates slower convergence in comparison to
MGPCG on uniform grids and notably slower convergence than
AMG algorithms [Shao et al. 2022]. Future work will focus on im-
plementing high-order interpolation schemes and fast-converging
solvers to address these limitations, thereby enabling the simulation
of cut-cell boundaries, free surfaces, and other complex geometric
configurations with improved accuracy and efficiency.

More physical models. In the future, we plan to extend Cirrus to
accommodate more physical models, such as free surface flows and
multiphase fluids. We also plan to explore two-way coupling with
solid objects on the adaptive grid to enable simulations of more
fluid-solid interaction phenomena.
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A DERIVATION OF THE GENERALIZED FLOW MAP

In this paper, we will adopt the Einstein summation convention by
default. We take the Jacobian matrix of flow map ¢[“’b] (x%) in the
form that components are denoted by subscripts:

[ab], a
og; " (x)
[ab]  ay _ i
7_:} (x ) - ax;z (13)
Note that x% = x(#,) is not a function of ¢}, which means
ax? x4 ot
o r e (14)

at,  otg Aty
The material derivative (full derivative) of # with respect to t;, thus
equals to the partial derivative
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By the definition (3)
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Then we calculate the material derivatives with respect to 4. It’s
easy to see from Eq. 4 that

¢[a,b] (¢[b’a] (xl)) :xb. (18)

b
Similar to Eq. 14 we have 2% at = 0. Taking partial derivatives with
respect to tg on both sides of Eq. 18 produces
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Note that gb[“’b] (x?) is a function of 4, t, and x%, and the terms
related to ot} /dt, disappears since it equals to zero. Therefore

29" (x)  apl* (x) ox]
dtg B ox¢ dtg
(20)
gLl (x2) L
= - U (x).
J

By moving the right-hand side of Eq. 20 to the left-hand side, it

[a,b] ( ya
can be observed that D¢D—ta(x) = %—’t‘: = 0. Intuitively, p[%?] (x?)

always maps the particle back to its position x? at time t;. This
position x? can be viewed as an ID carried by the particle, and

hence its material derivative is always zero.
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Now we take the time derivative of 1441 (x%) with respect to
ta.

DFi; _ 2 ) e FRTE
Di, ox° o, A
J kK77
Substituting (20) into (21):
3 [ 99 P i
(...):ax?( ™ ;uk(x ta))+uk(x ta) aa’?
[ab] . a
20 X a (22)
=- b a( )auk(xa, fa) (product rule)
axk axj
= —ﬁkVqu.
Thus
lab](,a
D‘F—(x) = —glabl (x?)Vul. (23)
Dt,

B GRID REFINEMENT AND COARSENING
ALGORITHMS

B.1 Refinement Algorithm

For grid refinement, we calculate and propagate a refinement flag on
tiles from the finest level L to the coarsest level 0 based on the rules
proposed in Sec. 4.2. In particular, we use ghost tiles as temporary
variables to propagate the flag through T-junctions. If a ghost tile
G at level i has a neighbor leaf tile T at the same level, and the
refinement flag of T is set, G’s leaf parent P must also be refined
regardless of whether it has reached the level target F(P). Otherwise,
the level difference between P and its new leaf neighbor, the refined
child of T, will become 2, violating the 1-level constraint. In this
case, we set G’s refinement flag and propagate to P when processing
level i — 1.

The grid refinement algorithm is given in Alg. 5. Note that the
ghost tiles are re-generated at the end because the refinement pro-
cess only guarantees that the leaf and inner tiles are correctly placed.
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Algorithm 5 RefineStep

Algorithm 6 CoarsenStep

Input: Adaptive grid G, maximum level L, target level function F
Output: Number of newly added tiles

1: N0
2: for each tile T in G do
3: T.refine_flag « false

4: fori=Lto0do

5 for each leaf tile T at level i do

6: T.refine_flag « (F(T) > i)
7 for each ghost child C of T do
8 if C.refine_flag then

9 T.refine_flag < true

10: if T.refine_flag then

11: Add 8 leaf children of T at level i + 1 to G
12: N—N+38
13: Mark T as inner
14: for each ghost tile G at level i do
15: for each leaf tile H € N;(G) do
> Nj: neighbors at level i
16: if H.refine_flag then
17: G.refine_flag « true

18: Generate ghost tiles as in Sec. 4.1
19: Return N

B.2 Grid Coarsening

Similar to the grid refinement, we also perform the grid coarsening
algorithm based on two flags in tiles: a coarsening flag and a deletion
flag. The deletion flag means that a tile should be deleted, while
the coarsening flag means that the children of the tile should be
deleted. We calculate and propagate these two flags with a two-pass
approach:

Bottom-up Pass. In the first pass, we iterate from the finest level
L to the coarsest level 0. At level i, each leaf tile T requests deletion
if F(T) < i, and all its inner neighbors will become a leaf by setting
the coarsening flag, to comply with the 1-level constraint. For each
inner tile S, its coarsening flag is set to true only if all 8 of its children
requested deletion.

Top-down Pass. In the second pass, we iterate from level 0 to L.

At level i, the coarsening flags of inner tiles are propagated to their
leaf tile children’s deletion flags, and the leaf tiles” deletion flags are
propagated to their ghost children. Additionally, if a ghost tile loses
all its leaf neighbors, its deletion flag will also be set because it no
longer resides at a T-junction.

Finally, all tiles with deletion flags are deleted, and all tiles with
coarsening flags are set to the leaf type. We summarize the whole
process in Alg. 6.

Input: adaptive grid G, maximum level L, target level function F
Output: Number of deleted tiles

1: N0

2: for eachtile T in G do

3: T.coarsen_flag « false

4 T.delete_flag « false

5. fori=Lto0do

6 for each inner tile S at level i do

7: S.coarsen_flag « true

8 for each child C of S do

9 if C.delete_flag = false then

> The delete flag of an inner tile is always false.

10: S.coarsen_flag « false

11: for each leaf tile T at level i do

12: T.delete_flag « (F(T) < i)

13: for each inner tile Q € N;(T) do

> Nj: neighbors at level i

14: if Q.coarsen_flag = false then
15: T.delete_flag « false

16: fori=0to L do

17: for each leaf tile T at level i do
18: P « the parent of T

19: T.delete_flag < P.coarsen_flag
20: for each ghost tile G at level i do
21: P « the parent of G
22: G.delete_flag <« P.delete_flag
23: nb_all_deleted « true
24: for each leaf neighbor H € N;(G) do
25: if H.delete_flag = false then
26: nb_all_deleted «— false
27: if nb_all_deleted then
28: G.delete_flag « true
29: fori=0to L do
30: for each tile T at level i do
31: if T.delete_flag then
32: Delete T from G
33: N«N+1
34: else if T.coarsen_flag then
35: Change T’s type to leaf

36: Generate ghost tiles as in Sec. 4.1
37: Return N
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