
An Interface Tracking Method with Triangle Edge Cuts

Mengdi Wanga,∗, Matthew Congb, Bo Zhua

aSchool of Interactive Computing, Georgia Institute of Technology, Atlanta, 30332, Georgia, USA
bNVIDIA Corporation, 2788 San Tomas Expy, Santa Clara, 95051, California, USA

Abstract

This paper introduces a volume-conserving interface tracking algorithm on unstruc-
tured triangle meshes. We propose to discretize the interface via triangle edge cuts
which represent the intersections between the interface and the triangle mesh edges
using a compact 6 numbers per triangle. This enables an efficient implicit repre-
sentation of the sub-triangle polygonal material regions without explicitly storing
connectivity information. Moreover, we propose an efficient advection algorithm for
this interface representation that is based on geometric queries and does not require
an optimization process. This advection algorithm is extended via an area correction
step that enforces volume-conservation of the materials. We demonstrate the efficacy
of our method on a variety of advection problems on a triangle mesh and compare
its performance to existing interface tracking methods including VOF and MOF.

Keywords: Interface Tracking, Interface Representation, Volume of Fluid,
Volume-conserving Advection Algorithm

1. Introduction

The interface between immiscible fluids plays a fundamental role in understand-
ing many real-world phenomena such as bubble dynamics, fluid fragmentation, and
ocean surface swirls. Interface tracking, i.e., numerically modeling and evolving
the interface, therefore has been a long-standing challenge in computational fluid
dynamics.[1, 2, 3] The physical simulator requires precise information about the in-
terface’s location and various related physical quantities, such as total mass within
a cell, and/or boundary conditions at the liquid-air interface. Essentially, interface

∗Corresponding author.
1E-mail addresses: mengdi.wang@gatech.edu (Mengdi Wang), matthew.d.cong@gmail.com

(Matthew Cong), bo.zhu@gatech.edu (Bo Zhu).

Preprint submitted to Journal of Computational Physics October 21, 2024

ar
X

iv
:2

41
0.

11
07

3v
2

 [
cs

.G
R

]
 1

8
O

ct
 2

02
4

tracking encompasses two primary components: A data structure for representing
the interface and an advection algorithm for evolving the interface over time. In a
typical simulation setup, the interface is discretized using primitives such as points,
segments, and polygons and evolved intending to accurately preserve both the inter-
face geometry and the total mass of materials.

Traditionally, interface tracking methods are classified as either Lagrangian or
Eulerian. In a typical Lagrangian method, the interface geometry is represented by
a low-dimensional Lagrangian data structure independent of the computational grid,
e.g., marker points [4, 5], connected meshes and/or curves [6, 7, 8], and various other
structures [9, 10]. While these methods can represent complex interfaces, accurately
time-stepping the Lagrangian data structures often requires frequent remeshing to
represent topological transitions and adequately sample large geometric distortions.
These geometric operations may hinder the efficiency of implementation, especially
on parallel systems in the presence of topology changes which often require (global)
remeshing. On the other hand, Eulerian methods involve representing the interface
on an Eulerian grid or mesh fixed in the space. For example, the level set (LS)
method [11, 12, 13, 14] adopts an implicit function ϕ that defines the interface as
the iso-surface ϕ(x) = 0. The level set method has been widely used in computa-
tional physics applications to track and solve dynamic interface problems and has
proven its efficacy in handling complex topological and geometrical evolution without
tackling local mesh repairments. However, it also suffers from volume loss, especially
where/when thin features occur, due to the inherent limitations of representing these
features on a grid with fixed resolution.

The volume of fluid (VOF) [15, 16, 17, 18] is an Eulerian method that has gained
the most significant attention for its ability to conserve fluid volume. The volume of
fluid Fi,j ∈ [0, 1] is defined as the fraction of liquid inside a cell (i, j), and its value
is tracked throughout the algorithm. The commonly used piece-wise linear interface
calculation (PLIC-VOF) method [19, 20] assumes that the interface in a cell (i, j)
is a line segment, which is reconstructed from Fi,j using certain numerical schemes
[21, 22]. In the traditional direction-splitting [23] advection method for PLIC-VOF,
the advection problem of a cell (i, j) is decomposed into two simple one-dimensional
advection problems along the x and y axes respectively, and their fluxes are combined
to obtain the change of Fi,j. Figure 2(a) illustrates an advection step of the central
cell along the x-axis in split PLIC-VOF advection.

The PLIC method often suffers from the artifacts of the interface reconstruction,
especially for thin geometric features. Typically, the PLIC method reconstructs
a thin fluid sheet as a group of broken droplets. López et al. have proposed a
double-PLIC method [24] to tackle this problem by allowing up to two parallel in-

2

terface segments to coexist in one cell and adding a marker point at the midpoint
of each interface segment. These marker points are connected as segment meshes,
whose topology will be used for spline interpolation. While double-PLIC is a hybrid
Lagrangian-Eulerian approach and challenging for parallelization, it is important to
recognize that representing the interface within a cell using only a single line segment
is inherently inadequate for capturing thin interfaces. By placing two interface seg-
ments within a cell, double-PLIC effectively achieves sub-grid accuracy, improving
the representation of these thin interfaces.

In recent years, many improvements to VOF method have emerged, aiming to
enhance representation and advection accuracy [25, 26]. Notably, many of these
methods address the advection problem by back-tracking a cell through the flow
map to acquire its shape in the last frame. We formally describe this process using
the concepts of image and pre-image. As illustrated in Figure 1, with superscript n

denoting the discretized time step t = n∆t, we define the image
−→
pn and pre-image←−

pn of a point pn as a mapping of point positions between different time steps [27],

−→
pn = pn+1 = pn +

∫ tn+∆t

tn
u(p(t), t)dt,

←−
pn = pn−1 = pn +

∫ tn−∆t

tn
u(p(t), t)dt.

(1)

The current state-of-the-art VOF methods adopt unsplit advection schemes [26],

Figure 1: The pre-image of a point pn at the previous time step n − 1, and its image at the
subsequent time step n+ 1.

which significantly reduce the geometric errors introduced by operator splitting. This
error arises because the split advection steps can distort the interface, leading to
artifacts such as the staircase phenomenon [28] and errors from clamping the VOF
values to [0, 1]. Denoting the rectangle shape defined by cell (i, j) as Ci,j, a typical

3

unsplit advection scheme like EMFPA [29] and CCU [30] calculates the new value

of Fi,j by determining the fluid area inside its pre-image
←−
Ci,j at the last time step,

ensuring volume conservation. Other methods [31, 26] may use different types of
control regions, but ultimately also involve intersecting their pre-images with the
liquid region.

The MOF method [32, 33, 34, 35, 36] is also an improvement to the VOF method
that operates explicitly on the pre-images of cells. In addition to the volume of fluid,
also known as the zeroth moment of the fluid, the MOF method also tracks the
first moment of fluid in a cell Ci,j, which is defined as M1 =

∫
Ci,j

xdx, for higher

accuracy of reconstruction. During the MOF advection, the moments of fluid are

calculated from the intersection between the pre-image
←−
Ci,j and the liquid region at

the last time step, which results in a set of polygons. The zeroth moment of fluid is
given by summing up the areas of these polygons similar to unsplit VOF advection.
However, the first moment is calculated by forward-tracking these polygons to get
their images and then performing a weighted sum of the images’ centroids [37]. This
distinction arises because advection does not conserve the first moment. We illustrate
the MOF advection process in Figure 2(b), where dotted lines draw the pre-image
of the central cell, and its intersection with the liquid region is shown in red. The
reconstruction step of the MOF method preserves the zeroth moment and tries to
make the first moment of the reconstructed liquid polygon as close to the predicted
value as possible, through a nonlinear optimization process [38].

Another interface tracking method, known as the polygon area mapping (PAM)
method [27, 39, 40], goes a step further by not explicitly relying on VOF values. In-
stead, it adopts a combined Lagrangian-Eulerian perspective by storing the liquid
region inside each cell as a set of polygons. The advection process of PAM begins
with a similar intersection calculation of the cell pre-image and the liquid polygons
and uses the images of the resulting polygons as an initial approximation of the liquid
region inside the cell. Subsequently, PAM applies a correction step involving remov-
ing small polygons and vertices [27] to limit the number of polygons and vertices
inside a cell. The advection step of PAM is illustrated in Figure 2(c). PAM is very
similar to MOF, but it allows for a more complex interface in a cell.

Motivated by the previously mentioned methods, including double PLIC, unsplit
VOF advection, MOF, and PAM, we aspire to formulate a sub-grid-accurate interface
tracking algorithm by combining sub-grid interface and pre-image geometric calcu-
lation methods, which is particularly suited for handling thin fluid features. At the
same time, we aim to design an algorithm that has lower complexity, a characteristic
that is less emphasized in many existing methods. Although the PLIC interface can
be reconstructed solely from VOF values, in practice, simulators often require an

4

(a) split PLIC-VOF (b) MOF (c) PAM (d) EBIT

Figure 2: Different advection methods of direction-splitting PLIC-VOF, MOF, PAM, and EBIT. (a)
The cell is translated along the x-axis, and its intersection with the interface (red area) is calculated

as the flux. (b) In MOF advection, the pre-image
←−−
Ci,j of cell (i, j) is first calculated, and then the

zeroth and first moments are calculated by intersecting it with the liquid region at the last time
step. (c) PAM advection is similar to MOF, but it accommodates more interface segments inside
a cell. (d) EBIT advection along the x−axis. Red and grey points represent new marker points
located on grid lines.

explicit interface, especially when calculating geometric quantities like interface cur-
vature in surface tension modeling [20, 41]. Therefore, PLIC-VOF requires 3 DoFs
for each cell. In order to represent two parallel interfaces, double-PLIC takes 4 DoFs
for two segments and 4 for two marker points, resulting in a total of 8 DoFs per cell.

MOF shows higher accuracy than the original version of split PLIC-VOF ad-
vection, at the cost of having 5 DoFs for each cell (2 additional DoFs for the first
moment), while still representing only one interface segment inside a cell. Based on
MOF, Shashkov and Kikinzon [35] propose MOF2, a second-order MOF that models
sub-grid geometry by representing the liquid polygon as the union or intersection of
two MOF-style liquid polygons. MOF2 tracks 3 second moments of fluid, increas-
ing the DoFs per cell to 8. The complexity of the MOF method is also reflected
in its interface reconstruction process which requires a costly nonlinear optimiza-
tion. The complexity of moment tracking and interface reconstruction will further
increase when extending these methods to 3D space. Similarly, although the PAM
method can model complex sub-grid interfaces within a cell, its explicit definition
of Lagrangian-style liquid polygons significantly increases the complexity of its data
structure. For example, the maximum number of polygon vertices inside a cell can
be up to 10 [27], making a total of 20 DoFs per cell.

Recently, an efficient interface tracking method, edge-based interface tracking
(EBIT) [42, 3], has gained community attention. EBIT delineates the interface
by a combination of vertex materials and a set of marker points along grid lines
that indicate the intersection between the interface and the grid. In each cell, the

5

intersection points implicitly define the interface within it as a segment, therefore,
the interface in the whole computational field can be represented as a segment mesh.
EBIT adopts a direction-splitting advection scheme, where the interface is moved
along x, y axes sequentially, and the new set of marker points is produced through
calculating the intersection between the interface and the grid. Figure 2(d) illustrates
the advection in the x direction. EBIT has only 2 DoFs for each cell, as each marker
point is shared by two cells, highlighting its ability to represent the interface with a
small amount of memory usage. However, EBIT struggles to conserve volume, and
since it only allows one intersection on one edge, it often fails to represent features
like thin fluid sheets. These shortcomings will be addressed in our proposed method.

The EBIT method inspired us to represent the interface elegantly using only a few
degrees of freedom based on its intersections with the grid edges. As we will discuss
in Section 8, we found that designing such an algorithm is more straightforward on
a triangle mesh compared to a lattice grid.

Therefore, we propose an Eulerian interface-tracking algorithm that accurately
tracks sub-triangle geometric features and ensures mass conservation. Our algorithm
circumvents the issues related to maintaining connectivity information, requires less
memory, and is easy to implement. In our proposed algorithm, the interface represen-
tation on an unstructured triangle mesh is divided into the interface representation
inside each triangle element using triangle edge cuts, a novel data structure for rep-
resenting two material regions inside the triangle. This data structure defines the
intersections between the interface and the triangle edges. Assuming at most 2 in-
tersections on each edge, we can store the interface using no more than 6 values
per triangle, and the material regions are automatically reconstructed as polygons
without ambiguity (see Section 2). The triangle edge cuts representation enables us
to model sub-triangle interface geometries, including arbitrarily thin fluid features,
with a low memory footprint. Moreover, we describe an efficient interface advection
method for this representation in Section 3, which queries only segment intersections
between the pre-images of triangle edges and the interface. To ensure higher accuracy
and mass conservation, we propose an area correction method in Section 4 based on
pre-image polygon intersections similar in spirit to MOF and PAM. In Section 5, we
discuss the implementation details of our proposed algorithm. We then validate our
algorithm using several static reconstruction and dynamic advection tests, compar-
ing its accuracy and efficiency with state-of-the-art algorithms in Section 6. Finally,
Section 7 discusses how to extend our proposed algorithm to 3D, while Section 8
provides a summary of this paper and outlines our future plans.

6

2. Triangle Edge Cut Interface Representation

Variable Definition
χ Indicator function
Ω Material region
P Polygon
T Triangle
E Triangle edge cut
A Liquid area
F Relative area fraction
Eg Absolute error
Er Relative error

Table 1: Terminology Table

In this paper, we focus on the interface tracking problem in a physical system
consisting of two materials in R2. Without loss of generality, we denote materials as
0 (air) and 1 (liquid) using the indicator function χ defined for any position p:

χ(p) =

{
0, if p is air,

1, if p is liquid,
(2)

We denote the air and liquid regions respectively as:

Ω0 = {p : χ(p) = 0},
Ω1 = {p : χ(p) = 1},

(3)

and the liquid-air interface is the boundary of the material regions, which is a
codimension-1 geometric structure, i.e., a curve in R2, or a surface in R3.

In our algorithm, we use the triangle edge cut to represent the material region as
polygons inside a triangle. A triangle edge cut E is defined as:

E = (T , c, R). (4)

Here T = ∆v1v2v3 is a triangle defined by its three vertices (v1,v2,v3). In the
following sections of the paper, we will define its three edges as

e1 = v1v2,

e2 = v2v3,

e3 = v3v1.

(5)

7

The boolean variable c indicates the material of v1:

c = χ(v1). (6)

R is a 3× 2 matrix that satisfies the following conditions:

Ri,j ∈ [0, 1],

Ri,1 ≤ Ri,2.
(7)

Each row Ri represents the vertices of material polygons on ei as interpolation factors.
Specifically, Ri,j corresponds to a vertex defined as

ri,j = (1−Ri,j)vi +Ri,jvi+1. (8)

We also call it a cut because ri,j is essentially an intersection between the triangle
edge and the interface. If Ri,j ∈ {0, 1}, we refer to it as an invalid cut because,
in that case, ri,j coincides with a triangle vertex and does not serve as a vertex
of a material polygon; thus, we simply ignore it. Otherwise, it’s a valid cut. For
convenience, if there is only one valid cut on ei, we will assume it to be Ri,1. For
example, Ri = (0, 0.4) and Ri = (0.4, 1) represent the same polygon vertices, and we
will always use the second one. Note that by the definition of R, we restrict each
edge to have at most 2 valid cuts.

Figure 3 depicts an example of a triangle edge cut with

c = 0, R =

0.3 1
0.5 1
0 1

 . (9)

Here, R1,1, R1,2 = (0.3, 1) indicates that there is one valid cut r1,1 on e1, represented
as a red dot. This implies that χ(v2) = 1, because there must be a liquid-air interface
intersecting e1. Similarly, r2,1 is the only valid cut on e2, and we can deduce that
χ(v3) = 0. Therefore, we can reconstruct the liquid region as a triangle ∆r1,1v2r2,1,
as shown in the figure, where the small blue triangle denotes the liquid region, while
the remaining white part represents air.

We can further perform similar interface reconstructions for all possible combina-
tions of (c, R). Fortunately, we don’t need to specify all the reconstructions explicitly,
because it’s easy to see that exchanging the roles of liquid and air, or cyclically per-
muting the vertices does not really change the results of interface reconstruction.
Now consider the three vertices of the triangle: either all of them have the same
material, or two vertices have the same material while the third one is different.

8

Figure 3: A simple example of a triangle edge cut. The small blue triangle denotes the liquid region.

Therefore, without loss of generality, we can assume that either all three vertices
are air, i.e., c = χ(v1) = χ(v2) = χ(v3) = 0, or v1 is the only liquid vertex, i.e.,
c = χ(v1) = 1 and χ(v2) = χ(v3) = 0.

For the first case where c = 0, any two vertices on the same edge are of the
same material, implied by the Jordan curve theorem [43], which states that the
line segment connecting them must intersect the interface an even number of times.
Under our restriction that each edge has at most two valid cuts, this number must be
0 or 2. Therefore, there can be 0, 1, 2, or 3 edges with 2 valid cuts, while the others
have no valid cuts. Due to cyclic symmetry, we can again assume that if there is one
edge with 2 valid cuts, it must be e1, and if there are two edges with 2 valid cuts,
they must be e1 and e2. In the second case where c = 1, there must be one valid
cut on both e1 and e3, since these edges connect two vertices of different materials.
Edge e2 can have either 0 or 2 valid cuts.

Figure 5 lists the four cases with c = 0 and the two cases with c = 1, which we
refer to as the basic cases. The interface reconstruction of any possible triangle edge
cut E2 can be derived from some E1 in one of the six basic cases, and an example
of such derivation is shown in Figure 4. In the remainder of this paper, we will
focus on the interface tracking algorithms on these basic cases. On an unstructured
triangle mesh, the interface in the whole computational domain can be represented
by defining the edge cut Ei for each triangle Ti. We denote the liquid polygon in Ei
as P ; therefore, the liquid region in the whole computational domain consists of a
set of polygons {Pi}.

9

Figure 4: An example of deriving the interface reconstruction of a triangle edge cut E2 from a basic
case E1. First, we exchange the roles of the liquid and the air, changing the value of c from 0
to 1; accordingly, the air polygon is swapped with the liquid polygon. Second, we apply a cyclic
permutation of vertex indices 1 2 3→ 3 1 2 to obtain E2.

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 5: Six basic cases of triangle edge cuts. Black dots represent liquid, white dots represent air,
and red dots represent valid cuts. Blue polygons represent the liquid regions inside triangles. In
cases 1, 2, 3, 4, all vertices are air, while in cases 5, 6, there is one liquid vertex and two air vertices.

10

3. Interface Advection

Now consider the interface advection inside a triangle T . We want to calculate
En+1 = (T , cn+1, Rn+1) using the interface {Eni } defined at time step n. Note that
the Eulerian triangle T doesn’t have a time step superscript. Using the interface
reconstruction described in Section 2, we can explicitly represent the liquid region
at time step n as a set of polygons {Pn

i }. Algorithm 1 describes a simple advection
algorithm that is carried out in three steps:

Step 1. Calculate pre-image T ′ of the triangle by advecting all vertices vi back by
−∆t using the 4th order Runge-Kutta method (RK4), and connecting these three
advected vertices ←−v1,

←−v2,
←−v3:

T ′ = ∆←−v1
←−v2
←−v3. (10)

Throughout the evolution of the interface, each particle retains its material, i.e., the
Lagrangian transportation equation

Dχ(p)

Dt
= 0 (11)

is satisfied. Therefore, we can directly calculate the material cn+1 from the interface
at the n-th time step with

cn+1 = χn
(←−v1

)
, (12)

which is done by checking if ←−v1 lies inside any polygon in {Pn
i } (including edges). If

so, it will be classified as a liquid vertex; otherwise, it’s air. Then we calculate the
intersections of edges of T ′ with the edges of {Pn

i }:

{r′
i,j} = e′i ∩ {Pn

i }. (13)

We will provide more implementation details about (12) and (13) in Section 5.

Step 2. Followed by the first step, we use the RK4 method again to calculate the
images of the intersections {r′

i,j} as the predicted edge cuts for En+1, that

{rn+1
i,j } = {

−→
r′
i,j}. (14)

However, due to the non-linear nature of RK4 time integration, rn+1
i,j may not lie on

edge ei, necessitating the next step.

11

Algorithm 1: InterfaceAdvection

Data: T , {Eni }
Result: En+1 = (T , cn+1, Rn+1)
// Step 1 (pre-image query)

1 T ′ ← ∆←−v1
←−v2
←−v3;

2 cn+1 ← χn
(←−v1

)
;

3 {r′
i,j} = e′i ∩ {Pn

i };
// Step 2 (advection)

4 {rn+1
i,j } ← {

−→
r′
i,j};

// Step 3 (reconstruction)

5 Rn+1
i,j ← (rn+1

i,j − vi) · (vi+1 − vi)/ |vi+1 − vi|2;
6 return (T , cn+1, Rn+1);

Step 3. In the last step, the predicted edge cuts {rn+1
i,j } are projected onto corre-

sponding edges to calculate the final result Rn+1:

Rn+1
i,j =

(rn+1
i,j − vi) · (vi+1 − vi)

|vi+1 − vi|2
. (15)

Thus, we acquire the new triangle edge cut En+1 = (T , cn+1, Rn+1).
This interface advection algorithm only performs segment-segment intersections

and cross products (to check the material of a point) in the pre-image; however, it
exhibits appreciable errors and does not preserve the liquid area. In Section 4, we
will discuss the area-correction step we used to address these issues. Furthermore,
in Section 5, we will provide more details about the implementation of this method.

4. Area Correction

There are two major reasons for the area error. First, the interface reconstruction
of case 2 in Figure 5 underestimates the liquid area. As shown in the left part of
Figure 6, two cuts r1,1, r1,2 suggest the presence of a liquid region, depicted as the
green dashed curve, however, it’s reconstructed as pure air. Second, the triangle edge
cut representation simplifies the interfaces inside T to linear segments. As depicted
in the right part of Figure 6, the actual interface is represented by the green dashed
curve, but it is reconstructed as a straight segment, resulting in area errors.

12

Case 2

Figure 6: Two main reasons for shape errors. Left: incorrect interface reconstruction in case
2. Right: errors from segment simplification of the interface inside T . The green dashed curve
represents the actual interface, and the blue region illustrates the reconstructed liquid region.

4.1. Additional Vertex for Case 2

To preserve the liquid area in case 2, we introduce a new liquid polygon ver-
tex, denoted as vt, inside T . The liquid region is then reconstructed as a triangle
∆r1,1r1,2vt, as shown in Figure 7. Taking vt into account, the liquid polygons in all

Case # c t Liquid Polygon P
1 0 (0, 0, 0) ∅
2 0 (2, 0, 0) (r1,1, r1,2,vt)
3 0 (2, 2, 0) (r1,1, r1,2, r2,1, r2,2)
4 0 (2, 2, 2) (r1,1, r1,2, r2,1, r2,2, r3,1, r3,2)
5 1 (1, 0, 1) (v1, r1,1, r3,1)
6 1 (1, 2, 1) (v1, r1,1, r2,1, r2,2, r3,1)

Table 2: Corresponding liquid polygon of each basic case, including the additional vertex vt in case
2.

basic cases are summarized in Table 2. Here, t is defined as a 3× 1 vector indicating
the number of valid cuts on each edge:

ti = |(0, 1) ∩ {Ri,1, Ri,2}| . (16)

When advecting the interface, we determine the position of vn+1
t in the occur-

rence of case 2 using the method outlined in Algorithm 2. First, we calculate the

13

Case 2

Figure 7: Case 2 after adding the additional vertex inside the triangle. The liquid area is now
represented by the blue triangle ∆r1,1r1,2vt.

intersection of T ′ defined in (10) with the liquid polygons at time step n:

{Πk} = T ′ ∩ {Pn
i }. (17)

Different from (13) that yields a set of points {r′
i,j}, the polygon-polygon intersections

here result in a set of polygons {Πk}. Similar to MOF [32] and PAM [27], the image
of a polygon Πk is obtained by connecting its RK4-advected vertices forward in time

∆t. The images of {Πk} are referred to as {
−→
Πk}, which serves as an approximation

of the liquid region inside T at time step n+1. The centroid xc of this liquid region
is then computed as

xc =

∑
k

∫
−→
Πk

xdx∑
k |
−→
Πk|

. (18)

Unlike the liquid area calculation (24) which will be discussed later and is performed
in the pre-image, we advect the liquid polygons {Πk} forward in time in (18) only in
the presence of case 2. The reason is the same as in the MOF method’s first moment
calculation, namely, the first moment conservation is not guaranteed.

We define the first tentative value v∗
t of the additional vertex vn+1

t such that the
reconstructed liquid polygon has a centroid xc. This can be achieved by taking

v∗
t = 3xc − rn+1

1,1 − rn+1
1,2 , (19)

where rn+1
1,1 , r

n+1
1,2 are given by (14). However, v∗

t may fall outside T , prohibiting us
from taking it as the additional vertex. If that happens, we then try to find two lines

14

L1, L2 in {Pn
i } that generate the edge cuts r1,1, r1,2. The image of their intersection

is then calculated as a second tentative value v∗∗
t :

v∗∗
t =

−−−−−→
L1 ∩ L2. (20)

If the line intersection also fails, we will try to find a vertex of {
−→
Πk} that lies inside

T and is farthest from e1. This vertex is considered as the third tentative value v∗∗∗
t :

v∗∗∗
t = argmax

p
D⊥(p, e1),p ∈ T ∧ p is a vertex of{

−→
Πk}. (21)

If that fails again, meaning there are no vertices of {
−→
Πk} falling in T , we will consider

it as a degenerate case and fall back to case 1.

4.2. Edge Cut Correction

In this section, we will discuss the quadratic edge cut correction step we used to
preserve the material areas, which is applied at the end of the advection algorithm.
Before that, we will first briefly discuss the material areas in a triangle edge cut.
We can easily observe that the relative material areas, i.e., the proportion of air and
liquid in T only depend on c and R. We denote the relative air area by F0, and the
relative liquid area by F1. Thus

F0 = F0(c, R),

F1 = F1(c, R).
(22)

In all basic cases, F0, F1 are quadratic functions of elements in R, as listed in Table 3,
where (u, v, w) satisfying

vt = wv1 + uv2 + vv3,

u+ v + w = 1,
(23)

are the barycentric coordinates of the additional vertex vt in case 2.
Suppose that we have established a triangle edge cut

En+1 = (T , cn+1, Rn+1)

at the end of Algorithm 1. Then, we want to further modify En+1 to preserve the
liquid area:

A =
∑
k

|Πk|, (24)

with Πk defined in (17). Note that we calculate the liquid area in the pre-image
similarly to MOF [32], for the same reason of mass conservation.

15

Algorithm 2: FindAdditionalVertex

Data: T , rn+1
1,1 , rn+1

1,2 , {Pn
i }

Result: vn+1
t

// Centroid reconstruction

1 {Πk} ← T ′ ∩ {Pn
i };

2 xc ←
∑

k

∫
−→
Πk

xdx/
∑

k |
−→
Πk|;

3 v∗
t ← 3xc − rn+1

1,1 − rn+1
1,2 ;

4 if v∗
t ∈ T then

5 return v∗
t ;

6 else
// Line intersection

7 L1, L2 ← two lines in {Pn
i } corresponding to r1,1, r1,2;

8 v∗∗
t ←

−−−−−→
L1 ∩ L2;

9 if v∗∗
t ∈ T then

10 return v∗∗
t ;

11 else

12 v∗∗∗
t ← argmaxp D⊥(p, e1), where p ∈ T and p is a vertex of {

−→
Πk};

13 if ∄v∗∗∗
t then

// Algorithm fails, fall back to case 1

14 return ∅;
15 else
16 return v∗∗∗

t ;

16

Case # F0 F1

1 1 0
2 1− F1 v(R1,2 −R1,1)
3 1− F1 (1 − R1,1)R2,2 − (1 −

R1,2)R2,1

4 R1,1(1 − R3,2) + (1 −
R1,2)R2,1+(1−R2,2)R3,1

1− F0

5 1− F1 R1,1(1−R3,1)
6 (1 − R1,1)R2,1 + (1 −

R2,2)R3,1

1− F0

Table 3: Relative material areas of different cases

Our edge cut correction only involves modifying the elements in Rn+1. We will
not change cn+1 or the number of valid cuts along each edge. In other words, we
want to find a 3× 2 matrix R′ satisfying:

t(R′) = t(Rn+1),

F1(c
n+1, R′) =

A

|T |
,

(25)

where t is defined in (16).
The way we decide R′ is modeled by a parameter τ ∈ [0, 1) such that

R′ = (1− τ)Rn+1 + τR∗. (26)

Clearly, τ = 0 corresponds to the unchanged situation R′ = Rn+1, that occurs only
when

F1(c
n+1, Rn+1) =

A

|T |
(27)

is already satisfied. R∗ in (26) is the limit of R′ when τ → 1, a degenerate case that
we shall never actually reach. For example, in Figure 8 we have

c = 0, R =

0.7 1
0 1
0.4 1

 , (28)

and we want to make the liquid area smaller by moving r1,1 to r′
1,1, and r3,1 to r′

3,1,
forming the new interface indicated by the green dashed line. In this case, we shall

17

have

R∗ =

0 1
0 1
1 1

 . (29)

Intuitively, we’re trying to move r1,1, r3,1 toward v1, shrinking the liquid region.

Figure 8: An example of edge cut correction. The initial liquid region (indicated by blue) is too
large, and we want to make it smaller by moving the interface to a new position (green dashed
line).

However, if they do reach v1 at τ = 1, the interface will degenerate to pure air. For
all general cases, Table 3 and (26) imply that F1(c

n+1, R′) is a quadratic function of
τ . The geometric meaning of τ indicates that F1(τ) is monotonic on [0, 1), therefore
we either have zero or one solution τ0 ∈ [0, 1) satisfying (25). If the solution τ0 is
present, we will update Rn+1 accordingly with (26). Otherwise, we consider the area
correction step to be failed and leave Rn+1 untouched.

Next, we will discuss how to find R∗. For an edge ei, if there is only one valid cut
ri,1 on it, then we will want to move it either toward vi or ri+1, thus R

∗
i,1 ∈ {0, 1}.

If there are two valid cuts ri,1, ri,2 and we want to separate them further apart, we
have

R∗
i,1 = 0,

R∗
i,2 = 1.

(30)

This means that we are moving them toward the two ends of the edge. Otherwise,
if we want to move them closer, we will set

R∗
i,1 = R∗

i,2 = si, (31)

with

si =
R1,1

R1,1 + 1−R1,2

. (32)

18

Equation (32) ensures that we always have

Rn+1
1,1

1−Rn+1
1,2

=
R′

1,1

1−R′
1,2

, (33)

for any value of τ , keeping the ratio of the lengths of the two outer segments constant.
Special care must be taken for case 2 with the additional vertex vt. If we want

to expand the liquid region, we will move vt toward v3 in the same manner param-
eterized by τ as in (26). Conversely, if we want to shrink the liquid region, we will
calculate a target point

st =
w

u+ w
v1 +

u

u+ w
v2, (34)

and move vt toward it. The barycentric coordinates of st are
(

u
u+w

, 0, w
u+w

)
, which

means that we will keep the ratio u/w of the barycentric coordinates constant during
the movement of vt.

Table 4 shows the area correction formulas. In case 2, the target points of vt are
indicated by v∗

t . The illustrations of the quadratic area correction for expanding and
shrinking the liquid region are presented in Figure 9 and Figure 10. The quadratic

Case R∗
1,1 R∗

1,2 R∗
2,1 R∗

2,2 R∗
3,1 R∗

3,2 v∗
t

Expand

2 0 1 — — — — v3

3 0 1 0 1 — — —
4 0 1 0 1 0 1 —
5 1 — — — 0 — —
6 1 — 0 1 0 — —

Shrink

2 s1 s1 — — — — st
3 s1 s1 s2 s2 — — —
4 s1 s1 s2 s2 s3 s3 —
5 0 — — — 1 — —
6 0 — s2 s2 1 — —

Table 4: Movements of edge cuts

edge cut correction is summarized in Algorithm 3. For cases 2, 3, 5, 6, we can exactly
recover any relative liquid area in (0, 1), because

lim
t→0

F1 = 0(pure air),

lim
t→1

F1 = 1(pure liquid),
(35)

19

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 9: Area corrections when trying to expand the liquid region. Brown lines indicate the
trajectories of cut points with τ ∈ [0, 1).

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 10: Area corrections when trying to shrink the liquid region. Brown lines indicate the
trajectories of cut points with τ ∈ [0, 1). Green dots correspond to si defined in (32), or st defined
in (34).

20

Algorithm 3: EdgeCutCorrection

// F ∗
1 is the target value of liquid proportion

Data: cn+1, Rn+1, F ∗
1

Result: R′

1 R∗ ← Table 4;
2 f(τ)← F1 (c

n+1, (1− τ)Rn+1 + τR∗);
// Solve for the quadratic equation

3 τ0 ← f(τ0) = F ∗
1 ;

4 return (1− τ0)Rn+1 + τ0R
∗;

and the monotonicity of F1(τ) guarantees that there must be one solution. However,
for case 4 we have

lim
t→0

F1 = 0(pure air),

lim
t→1

F1 < 1,
(36)

because even in the limit case τ = 1, there will still be a liquid triangle s1s2s3 inside
the triangle. This is the only case where our algorithm fails to preserve the liquid
area. Fortunately, case 4 is very uncommon because it means there are 2 cuts on all
three edges of T n+1, indicating thin intricate geometries of the interface that rarely
occur.

By adding the additional vertex in case 2 and the incorporating the quadratic
edge cut correction step into Algorithm 1, we have completed our interface advection
algorithm with area correction in Algorithm 4. Compared to Algorithm 1, we have
introduced a fix for case 2 (lines 6 − 7) and included an extra edge cut correction
step (lines 8− 11).

5. Implementation

In this section, we talk about the program implementation of our interface track-
ing algorithm. For each triangle T and its triangle edge cut E = (T , c, R), we store
the R matrix with six floating-point variables. Additionally, c can be put into the
sign bit of R1,1, which avoids any extra memory usage. For case 2 in Figure 7, noting
that we have all Ri,j ∈ [0, 1], we can store the barycentric coordinates (u, v) defined
in (23) for the extra vertex by setting R2,1 = u+ 2, R2,2 = v + 2 to distinguish them
from valid cuts. Table 5 compares the memory costs of different interface-tracking
methods, including our proposed approach. With the triangle edge cut representa-
tion, our method enables sub-triangle modeling with a low memory cost of 6 DoFs
for each element.

21

Algorithm 4: InterfaceAdvectionWithAreaCorrection

Data: T , {Eni }
Result: En+1 = (T , cn+1, Rn+1)
// Step 1 (pre-image query)

1 T ′ ← ∆←−v1
←−v2
←−v3;

2 cn+1 ← χn
(←−v1

)
;

3 {r′
i,j} ← e′i ∩ {Pn

i };
// Step 2 (advection)

4 {rn+1
i,j } ← {

−→
r′
i,j};

// Step 3 (reconstruction)

5 Rn+1
i,j ← (rn+1

i,j − vi) · (vi+1 − vi)/ |vi+1 − vi|2;
6 if (T , cn+1, Rn+1) falls into case 2 then

// Algorithm 2

7 vn+1
t ← FindAdditionalVertex(T , rn+1

1,1 , r
n+1
1,2 , {Pn

i });
// Step 4 (edge cut correction)

8 {Πk} ← T ′ ∩ {Pn
i };

9 F ∗
1 ←

∑
k |Πk|/|T |;

10 if F1(c
n+1, Rn+1) ̸= F ∗

1 then
// Algorithm 3

11 Rn+1 ← EdgeCutCorrection(cn+1, Rn+1, F ∗
1);

12 return (T , cn+1, Rn+1);

Algorithm Element DoFs Sub-grid
Level Set 1 No
PLIC-VOF 3 No

MOF 5 No
Double-PLIC 8 Yes

MOF2 8 Yes
PAM 20 Yes

Proposed 6 Yes

Table 5: Comparison of memory costs of different interface tracking algorithms.

22

Figure 11: Difference between interior segments and boundary segments of the liquid polygon. Yel-
low lines r1,2r2,1 and r2,2r1,1 are interior segments. Green lines r1,1r1,2 and r2,1r2,2 are boundary
segments.

For clarity, before introducing the implementation of the interface advection al-
gorithm, we first distinguish between two types of liquid polygon edges shown in
Figure 11: interior segments and boundary segments. An interior segment, as the
name suggests, is fully inside a triangle, while a boundary segment lies along the
boundary of a triangle. In Figure 11, interior segments are drawn with yellow lines,
and boundary segments with green lines.

The most important steps in the interface advection Algorithm 4 are the first
two: calculating the materials of vertex images (12) and finding the intersections
between edges and the interface (13). To determine the material χn(←−v) of a vertex
image ←−v , we first locate its belonging triangle T of ←−v in the mesh, and check if ←−v
lies inside any liquid polygon defined by its corresponding edge cut En = (T , cn, Rn).
In practice, we don’t need to perform the inclusion test for all the liquid polygons.
Instead, for each interior segment, it is sufficient to check whether ←−v is on its left
or right side. By using this method, we can reduce the computational effort. For
example, in Figure 12, we only need to check if ←−v is on the right side of r1,2r2,1 or
r2,2r1,1. If so, we conclude that ←−v is air, like the case of ←−vi . Otherwise, ←−v is in the
shadowed area, indicating it’s liquid like ←−vj . To avoid degeneracies, if ←−v lies exactly
on an interior segment, we also consider it to be liquid.

There are two types of edge-interface intersections (13): intersections with interior
segments, and intersections with boundary segments. For an edge e′i in (13), we
simply iterate over all interior segments in its intersecting triangles in the mesh to
perform segment-segment intersections. However, extra attention must be paid to
the boundary segments to avoid generating duplicate edge cuts, as an edge is shared
by two triangles in the mesh. First, we calculate the intersections between edge e′i

23

Figure 12: Determining the materials of←−vi and
←−vj by checking if they’re on the right side of interior

segment r1,2r2,1 or r2,2r1,1.

and the edges of its intersecting triangles. If an intersection p is found, we will find
its two neighboring triangle edge cuts E1, E2, and calculate the materials using the
method described in Figure 12. If the results in E1, E2 differ, p is considered as an
edge cut, like point a in Figure 13. However, if the results are the same, p shall be
inside of a larger liquid or air polygon, and thus not considered as an edge cut, like
point b.

Figure 13: Calculating possible edge cuts between an edge e′i and boundary segments. Point a is
considered an edge cut since it has different materials in two adjacent triangles. However, b is not
considered an edge cut because it lies inside a larger liquid polygon.

In our implementation, we also take efforts to avoid degenerate cases. For ex-
ample, if an edge of T ′ in (13) coincides with an edge in the liquid polygons {Pn

i },
the intersection will be a segment instead of a single cut point. Or, if an edge of T ′

passes through a vertex of a liquid polygon Pn
i , we may find two duplicate cuts on

it, however, none of them should be taken into account because, in this situation,
the edge does not actually cut through the liquid region. We use two efforts to deal

24

with degeneracy. First, before the backward RK4 to calculate T ′, we add a random
perturbation in the magnitude of 10−6∆x to each vertex vi. This random perturba-
tion largely eliminated the edge coincidence cases, especially when the velocity field
is 0. Then, we also use the materials of the vertices as an additional safeguard for
degenerate cases when performing edge-interface intersections (13). We first query
the materials

c1 = χn
(←−vi

)
,

c2 = χn
(←−−vi+1

)
.

(37)

According to the Jordan curve theorem, if c1 = c2, there are either 0 or 2 cuts on e′i,
and if c1 ̸= c2, there is only one cut. In the case of c1 = c2, if only one cut is found,
we discard it. If we find more than two cuts, we keep only the first one and the last
one, sorted by their distances from ←−vi . Similarly, in the case of c1 ̸= c2, we will only
keep the first cut.

6. Experiments

In this section, we evaluate our interface advection algorithm with area correction
on a static reconstruction test and four dynamic advection tests.

6.1. Static Reconstruction

We begin the numerical experiments with the convergence analysis of static re-
construction tests with three shapes: a circle, a snake shape, and a heart shape. In
our numerical tests, we first divide the computational domain into a lattice grid and
then divide each grid cell into a lower-right triangle and an upper-left triangle. The
triangle edge cut is defined in each triangle, representing the interface.

In the circle test, we place a liquid circle with a radius of r = 0.15 at the center
of the computational domain [0, 1]2. The snake shape test is introduced by [35]. It
also takes a [0, 1]2 computational domain. In this test, the liquid region is the area
between

y = 0.5 + 0.3 sin(2πx), (38)

and
y = 0.5 + 0.3 sin(2π6). (39)

The heart shape, also adopted by [35], is defined by a curve

x =
16 sin3(θ)

40
+ 0.52,

y =
13 cos(θ)− 5 cos(2θ)− 2 cos(3θ)− cos(4θ)

40
+ 0.55,

(40)

25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) Circle, 8× 8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) Snake, 8× 8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) Heart, 8× 8

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Circle, l = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(e) Snake, l = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(f) Heart, l = 0

Figure 14: Static reconstruction results for circle, snake, and heart shapes using an 8 × 8 lattice
mesh (top row) and an unstructured triangle mesh (bottom row) at refinement level 0. Our interface
representation method can effectively recover the shape even at such low resolutions.

for θ ∈ [−π, π].
The reconstruction results of three shapes at 8×8 resolution are shown in the top

row of Figure 14. To quantify the accuracy of our method, we calculate the absolute
shape error Eg using the expression [24]

Eg =
∑
i,j

|Ai,j − Ãi,j|, (41)

where Ãi,j = A(E1) + A(E2) represents the sum of liquid areas in two triangles of
cell (i, j), and Ai,j is the liquid area in cell (i, j), calculated using a high-resolution
representation of the liquid shape consisting of 1000 vertices.

To assess the convergence rate across different resolutions, we employ the follow-
ing formula [27]:

On = log2

(
Eg(n/2)

Eg(n)

)
. (42)

26

8 16 32 64 128 256
N

10 5

10 4

10 3

E g

circle
Fitted line (slope = -1.86)
snake
Fitted line (slope = -1.97)
heart
Fitted line (slope = -1.99)

Figure 15: Absolute shape errors for static reconstruction tests of three different shapes. Our
proposed method demonstrates the expected second-order convergence.

We tested these three shapes at N ×N resolutions for N = {8, 16, 32, 64, 128, 256}.
Equation (42) implies that the convergence order corresponds to the slope in the
log2(N)−log2(Eg) diagram, which is shown in Figure 15. We use least squares fitting
to estimate the slope, and the results indicate that our proposed algorithm achieves
second-order accuracy, which is expected because we use straight lines to represent
the interface. Higher convergence order requires using higher-order discretizations of
the interface, such as curves.

We also evaluated our algorithm’s static reconstruction results on unstructured
meshes, which were generated by the Triangle mesh generator [44, 45]. For a refine-
ment level l = {0, 1, 2, 3}, we restrict the maximum triangle area in the mesh to be
0.01/(2l)2, and thus, the convergence order can be calculated as

On = log2

(
Eg(l − 1)

Eg(l)

)
. (43)

The numbers of triangles inside the [0, 1]2 domain are {150, 620, 2472, 9899} respec-
tively for four refinement levels. The reconstruction results for l = 0 are shown in the
bottom row of Figure 14. Based on the surface reconstruction approach proposed in
this paper, we can use a relatively simple method to compute curvature: For each

27

interior segment pq, we find the nearest interior segment within the two adjacent
triangles to pq. Then, using all the vertices of these segments, including p and q, we
fit a parabola y = ax2+bx+c and compute the curvature at the midpoint (xp+xq)/2
with the formula

κ =
2a

(1 + (2ax+ b)2)3/2
.

If the range of y coordinates for given points is larger than the range of x coordinates,
we fit a parabola x = ay2 + by+ c instead and compute κ similarly. We measure the
L∞ error for the curvature computation as

Eκ = max
ei

|κ̃i − κi|
|κi|

for all interior segments ei, where κ̃i is the computed curvature for ei, and κi is
the ground truth. Table 6 summarizes the shape error Eg and the curvature error
Eκ, along with their convergence orders for the same three shapes on unstructured
meshes. The shape error Eg shows a similar second-order convergence as lattice grids.
The simple curvature scheme achieves first-order convergence, and its performance
decreases at higher resolutions, because the points used for parabolic fitting are close
to each other, leading to reduced accuracy.

Higher-order curvature computation schemes are beyond the scope of this paper.
However, we adopted an interface discretization scheme similar to PLIC-VOF, and
in our method, each edge cut corresponds to an edge in the triangle mesh. This
correspondence is not altered during area correction, allowing us to establish a local
segment mesh for each interface segment. As a result, the curvature computation
schemes based on PLIC-VOF and the segment mesh are compatible with our algo-
rithm. Readers may refer to [25, 46] for more details.

6.2. Rider–Kothe Reversed Single Vortex

We evaluate the efficacy of our method in handling shearing flows through the
Rider-Kothe reversed single vortex test [18]. In this test, the velocity field is derived
from the stream function

ψ(x, y) =
1

π
sin2(πx) sin2(πy) cos

(
πt

T

)
, (44)

where T = 8. The corresponding velocity components are computed as

u = −2 cos(πt/T) cos(πy) sin2(πx) sin(πy),

v = 2 cos(πt/T) cos(πx) sin(πx) sin2(πy).
(45)

28

Shape
Refinement level(l)

0 1 2 3

circle

Eg 3.34× 10−3 9.30× 10−4 2.09× 10−4 4.56× 10−5

On — 1.84 2.15 2.20
Eκ 6.43× 10−1 3.25× 10−1 1.25× 10−1 8.62× 10−2

Oκ — 0.99 1.38 0.53

snake
Eg 4.55× 10−3 1.20× 10−3 3.14× 10−4 8.01× 10−5

On — 1.92 1.93 1.97

heart
Eg 7.30× 10−3 1.22× 10−3 2.81× 10−4 8.70× 10−5

On – 2.58 2.12 1.69

Table 6: Static reconstruction results and convergence orders for three shapes on unstructured
triangle meshes. Oκ is the convergence order of Eκ.

When subjected to this velocity field, a liquid circle initially centered at (0.5, 0.75)
with a radius of 0.15 undergoes significant stretching around the center, reaching its
maximum extent at T/2, and subsequently reverses its trajectory back to its initial
position. The absolute shape error is then measured using (41), with the initial
shape serving as the ground truth. The advection results are summarized in Table 7.
Remarkably, even at a relatively low resolution of 64×64, our method exhibits strong
performance, effectively restoring the initial state. As the resolution increases, the
errors become imperceptible to the naked eye.

The shape errors and comparisons for the single vortex test are detailed in Table 8
with a Courant number Cr = 1. To assess our method’s ability to uphold mass
conservation, we compute the relative area error:

Em =

∣∣∣∣∣
∑

i,j A
0
i,j −

∑
i,j Ãi,j∑

i,j A
0
i,j

∣∣∣∣∣ , (46)

where A0
i,j denotes the liquid area in cell (i, j) at t = 0, and Ãi,j represents the

advected liquid area in cell (i, j). Notably, our method outperforms prior methods,
except for iPAM, which is an improved version of PAM. In comparison to PAM,
our method is free of the high computational costs associated with maintaining and
simplifying liquid polygons.

6.3. Zalesak’s Disk

The Zalesak’s disk advection test, originally proposed by Zalesak [48] and then
adopted by Rudman [49], has become a widely recognized benchmark for evaluating

29

64× 64 128× 128 256× 256

1
2
T

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

3
4
T

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

T

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Table 7: Results of Rider–Kothe reversed single vortex, all Cr = 1.

the efficacy of various advection schemes in capturing sharp interfaces at different
orientations. In the existing literature, this test has two different configurations,
which we refer to as config A and config B. In config A, a notched disk centered
at (2.0, 2.75) with radius R = 0.5 is initialized inside a [0, 4]2 domain. The notch
width is s = 0.06 and the width of the bridge between the left and right halves is
r = 0.4 [27]. Therefore, we can compute its initial liquid area A0 = 0.7494. The
stream function is expressed as [27]

ψ(x, y) = −ω
2
[(x− xo)2 + (y − yo)2], (47)

30

Algorithm Resolution Em Eg On

Rider and Kothe [18]
32× 32 — 4.78× 10−2 —
64× 64 — 6.96× 10−3 2.78
128× 128 — 1.44× 10−3 2.27

EMFPA-SIR [29]
32× 32 — 4.64× 10−2 —
64× 64 — 5.94× 10−3 2.97
128× 128 — 5.39× 10−4 3.46

Double-PLIC [24]

32× 32 — 5.78× 10−3 —
64× 64 — 1.77× 10−3 1.71
128× 128 — 3.30× 10−4 2.42
256× 256 — 8.69× 10−5 1.93

NIFPA-1 [31]
64× 64 < 10−12 1.14× 10−2 —
128× 128 < 10−12 2.68× 10−3 2.01
256× 256 < 10−12 5.37× 10−4 2.32

Owkes and Desjardins [47]
64× 64 4.12× 10−13 1.04× 10−2 —
128× 128 2.53× 10−13 1.34× 10−3 1.94
256× 256 1.15× 10−13 3.50× 10−4 2.22

CCU [30]

32× 32 — 3.81× 10−2 —
64× 64 — 4.58× 10−3 3.06
128× 128 — 1.00× 10−3 2.20
256× 256 — 1.78× 10−4 2.59

iPAM [40] (hL = 0.1h)
32× 32 — 6.21× 10−4 —
64× 64 — 1.05× 10−5 2.99
128× 128 — 1.37× 10−6 2.94

AMR-MOF [37]
32× 32 — 2.33× 10−2 —
64× 64 — 3.15× 10−3 2.88
128× 128 — 5.04× 10−4 2.64

Edge Cut (proposed)

32× 32 — 8.75× 10−3 —
64× 64 — 1.15× 10−3 2.93
128× 128 — 1.76× 10−4 2.71
256× 256 — 4.61× 10−5 1.93

Table 8: Shape errors of Rider–Kothe reversed single vortex tests at t = T with different methods
and parameters. The results of EMFPA-SIR are taken from [24]. The results of NIFPA-1 are taken
from [26]. The mass errors reported in [47] are the absolute differences in the liquid area, and we
divide them by πr2 where r = 0.15 to obtain Em in the table.

31

where (xo, yo) = (2, 2) denotes the center of the computational domain, and ω = 0.5
represents the angular velocity. Consequently, the velocity field is defined by:

u = −ω(y − 2),

v = ω(x− 2).
(48)

At T = 4π, the notched disk completes a full circle and returns to its initial position.
The advection results are depicted in Figure 16.

On the other hand, the computational domain in config B is [−0.5, 0.5]2, and the
disk with R = 0.15, r = s = 0.05, centered at (0, 0.25) [47], has A0 = 0.05822. To
compensate for the difference between the two configurations, we define the relative
shape error to the initial liquid area A0 as

Er =

∑
i,j |Ai,j − Ãi,j|
|
∑

i,j A
0
i,j|

=
Eg

A0
.

The relative area error Em and the relative shape error Eg for the Zalesak’s disk test
are provided in Table 9. This demonstrates that our proposed algorithm achieves
state-of-the-art performance in preserving geometric shapes among VOF-based meth-
ods. Especially, our method effectively preserves of the interior notch, despite slight
distortions at sharp corners attributable to the simplified representation capacity of
the triangle cuts. At the same time, our algorithm also accurately maintains mass
conservation. Moreover, our method shows better accuracy at Cr = 1 compared
to Cr = 0.25, because the former requires fewer time steps, thus reducing the ac-
curacy loss caused by interface discretization. Specifically, our algorithm achieves
near-perfect mass conservation in most cases, except for the uncommon case 4, as
discussed in Section 4.2. Using fewer time steps helps reduce the occurrence of such
cases. As a result, our algorithm attains high mass conservation accuracy at Cr = 1.

6.4. Deformation Field

This deformation field test, originally proposed by Smolarkiewicz [51], serves as a
rigorous assessment of advection methods, evaluating their effectiveness in handling
highly deformable flows.

The computational domain is consistent with the Rider-Kothe reversed vortex
test, covering the unit square [0, 1]2. Initially, the liquid region is a circle centered
at (0.5, 0.5). The governing stream function, which describes the flow velocity field,
is expressed as [27]:

ψ(x, y) =
1

nπ
sin(nπ(x+ 0.5)) cos(nπ(y + 0.5)) cos

(
πt

T

)
, (49)

32

0.8 1.0 1.2 1.4 1.6 1.8

1.6

1.8

2.0

2.2

2.4

2.6

(a) t = 1
4
T

1.6 1.8 2.0 2.2 2.4 2.6

0.8

1.0

1.2

1.4

1.6

1.8

(b) t = 1
2
T

2.2 2.4 2.6 2.8 3.0 3.2
1.4

1.6

1.8

2.0

2.2

2.4

(c) t = 3
4
T

1.6 1.8 2.0 2.2 2.4 2.6

2.2

2.4

2.6

2.8

3.0

3.2

(d) t = T

Figure 16: Zalesak’s disk at 200× 200 resolution and Cr = 1.

33

Algorithm Cr Resolution Em Er

EMFPA-SIR [29] 0.25 200× 200 — 8.74× 10−3

Owkes and Desjardins [47]
50× 50 4.41× 10−14 6.83× 10−2

100× 100 7.93× 10−13 2.02× 10−2

200× 200 7.78× 10−12 9.09× 10−3

THINC/QQ [50](β = 6) 0.25
50× 50 — 8.96× 10−2

100× 100 — 3.22× 10−2

200× 200 — 1.67× 10−2

AMR-MOF [37] 200× 200 — 2.32× 10−4

PAM [27]

0.25

200× 200 — 5.30× 10−4

iPAM [40](hL = 5h2)
50× 50 — 8.74× 10−3

100× 100 — 4.00× 10−4

200× 200 — 1.79× 10−5

Edge Cut (proposed)

1.0
50× 50 4.68× 10−3 2.05× 10−2

100× 100 5.30× 10−10 7.13× 10−3

200× 200 1.65× 10−10 2.20× 10−3

0.25
50× 50 1.65× 10−2 4.31× 10−2

100× 100 2.46× 10−4 1.43× 10−2

200× 200 5.97× 10−7 4.88× 10−3

Table 9: Results of Zalesak’s disk test. The result of AMR-MOF is taken from [40]. Owkes &
Desjardins [47] and THINC/QQ [50] use config B; other tests use config A.

34

where T = 2 represents the period, and the parameter n = 4 denotes the number
of vortices. As the evolution progresses to t = T , the liquid region undergoes defor-
mation and ultimately returns to its initial state. Consequently, the velocity field is
characterized by:

u = − cos

(
πt

T

)
sin(nπ(x+ 0.5)) sin(nπ(y + 0.5)),

v = − cos

(
πt

T

)
cos(nπ(x+ 0.5)) cos(nπ(y + 0.5)).

(50)

The shape errors are presented in Table 10, along with visual representations of
the advected liquid regions in Figure 17. Notably, our method exhibits an exceptional
capability to accurately capture even the intricately thin sections of the liquid.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) t = 0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) t = 1
4
T

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) t = 1
2
T

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) t = 3
4
T

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(e) t = 7
8
T

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(f) t = T

Figure 17: Deformation field test with 128× 128 grid and Cr = 1.

6.5. Time Cost

In this section, we will provide the timing data acquired on the 128× 128 single
vortex test in Section 6.2 and discuss the algorithm’s efficiency. Table 11 shows the

35

Algorithm Cr Resolution Em Eg Oh

Rider and Kothe [18]
64× 64 — 1.12× 10−2 —
128× 128 — 5.95× 10−3 0.91

THINC [52]
32× 32 — 2.60× 10−2 —
64× 64 — 1.38× 10−2 0.91
128× 128 — 9.26× 10−3 0.58

CCU [30]

1.0
64× 64 — 1.07× 10−2 —
128× 128 — 5.58× 10−3 0.94
256× 256 — 1.47× 10−3 1.93

0.1
64× 64 — 1.42× 10−2 —
128× 128 — 7.31× 10−3 0.96
256× 256 — 1.60× 10−3 2.19

PAM [27]

1.0
64× 64 7.11× 10−5 7.73× 10−5 —
128× 128 7.44× 10−6 7.19× 10−6 3.43
256× 256 7.45× 10−7 3.85× 10−7 4.22

0.1
64× 64 7.16× 10−6 8.89× 10−5 —
128× 128 7.42× 10−7 1.41× 10−5 2.67
256× 256 9.02× 10−8 1.86× 10−6 2.92

iPAM [40](hL = h3/2)
64× 64 — 4.31× 10−5 —
128× 128 — 5.55× 10−6 2.96
256× 256 — 6.96× 10−7 3.00

Edge Cut (proposed)

1.0
64× 64 6.25× 10−5 1.79× 10−3 —
128× 128 1.97× 10−4 4.26× 10−4 2.07
256× 256 1.31× 10−5 7.63× 10−5 2.48

0.1
64× 64 1.39× 10−3 2.49× 10−3 —
128× 128 1.36× 10−3 8.20× 10−4 1.60
256× 256 1.12× 10−4 1.46× 10−4 2.49

Table 10: Results of the deformation field test.

36

Algorithm Running Time (s)

AMR-MOF [37] 107.36
iPAM [40] (hL = 0.1h) 16.32
CCU [30] 5.98
Owkes and Desjardins [47] 0.17
Edge Cut (proposed) 3.07

Table 11: Comparison of running time between different algorithms. Timing data for iPAM [40]
and CCU [30] are scaled for comparison.

comparison of execution time between different methods. Our timing data is obtained
from a workstation with a 3.6 GHz Intel i7-12700K CPU and 32 GB RAM, which
we used to conduct all experiments. In terms of runtime efficiency, our method out-
performed most previous methods with high interface-tracking accuracy, attributed
to our simple interface representation data structure and advection algorithm, which
is easy to implement and is free of costly operations like optimization processes in
MOF, or geometric editing of polygons in PAM.

As a prototype program, our algorithm still has significant room for time opti-
mization. In the interface advection (see Algorithm 4), the most time-consuming
part is the polygon-polygon intersection in equation (17), which takes 2.95s(96%)
of the runtime, and all other parts only take 0.12s. This is primarily due to our
use of the exact geometry computation procedure of CGAL [53] to avoid computing
errors when degeneracy cases are found, e.g., an edge in the pre-image is very close
to a vertex of the liquid polygon, leading to mistakenly identifying two edge cuts on
the connected line segments instead of one. Since exact computations can reduce
program speed by 1 to 2 orders of magnitude compared to floating-point geometric
operations, especially in cases close to degeneracy [54], we anticipate that the runtime
efficiency of our program can be significantly improved by adopting floating-point ge-
ometric algorithms that can handle degeneracy cases [55] to a similar level to Owkes
and Desjardins[47].

We can further optimize our program by leveraging the fact that methods like
MOF and PAM rely on actual polygon-polygon intersections to calculate the mo-
ments of fluid, while our algorithm only requires the intersection area for edge cut
correction in Algorithm 3, and the triangle edge cuts advection (see Algorithm 1)
can be built only by querying segment-segment intersections and cross products. Al-
though Algorithm 2 may require exact polygon-polygon intersections, it is seldom
called. In the current implementation, we will calculate these actual intersections in

37

all cases, which can be optimized in the future.
In the current implementation, thread-unsafe features in the CGAL library, such

as lazy types [56], significantly hinder the parallelism of our algorithm. However,
in our proposed Algorithm 4, each triangle is processed separately, only sharing the
liquid polygons {Pn

i } as read-only data. This allows for efficient parallelization using
thread-safe features from shared-memory programming platforms like OpenMP [57]
or TBB [58].

7. Discussion on 3D Extension

7.1. Extending to 3D Space

(a) 0 edges have two valid cuts. (b) 1 edge has two valid cuts.

(c) 2 edges have two valid cuts. (d) 3 edges have two valid cuts.

Figure 18: Four possible cases with 1 fluid vertex and 3 air vertices. (a) No edges have two valid
cuts. One interface is reconstructed in the tetrahedron. (b) One edge has two valid cuts. These
two cuts are ignored and the interface reconstruction is the same as (a). (c) Two edges have two
valid cuts. Two interfaces are reconstructed. (d) Three edges have two valid cuts. Three interfaces
are reconstructed.

In this section, we briefly explore the possibility of extending our algorithm to
3D space. Now consider performing interface reconstruction based on the edge cut
information of a tetrahedron in 3D space, assuming that all interfaces are planes
inside the tetrahedron. Similar to the discussion in Section 2, exchanging the roles

38

of liquid and air, or rotating the tetrahedron, does not change the interface inside
it. Therefore, among these equivalent cases, we can focus on discussing only one of
them. Without loss of generality, we can assume that among the four vertices of the
tetrahedron, there are 0, 1, or 2 fluid vertices, while the remaining vertices being air.
Next, we will discuss these three cases individually.

(a) 0 edges have two valid cuts. (b) 1 edge has two valid cuts.

(c) 2 edges have two valid cuts. (d) 2 edges have two valid cuts.

Figure 19: Four possible cases with 2 fluid vertices and 2 air vertices. (a) No edges have two valid
cuts. One interface is reconstructed from four cut points. (b) One edge has two valid cuts. Two
interfaces are reconstructed. (c) Two edges have two valid cuts. Cuts on one of them are ignored
and the reconstruction is the same as (b). (d) Another possible reconstruction of (c).

Tetrahedron with 1 fluid vertex.. Suppose that the four vertices of the tetrahedron
are v1,v2,v3 and v4, and χ(v1) = 1 while χ(v2) = χ(v3) = χ(v4) = 0. We denote
the edge connecting v1 and v2 as e12, and so on. In this case, there must be one
valid cut on edges e12, e13, e14, and in the remaining three edges, there may be
{0, 1, 2, 3} edges with two valid cuts. These four cases are summarized in Figure 18.
In Figure 18b, we have to discard two cuts, introducing some geometric errors. In
Figure 18c, one interface is defined by four vertices, and we need to fit a plane based
on their positions.

Tetrahedron with 2 fluid vertices.. Suppose that χ(v1) = χ(v2) = 1 and χ(v3) =
χ(v4) = 0. There must be one valid cut on edges e13, e14, e23 and e24. In the

39

(a) 0 edges have two valid cuts. (b) 1 edge has two valid cuts.

(c) 2 edges have two valid cuts. (d) 2 edges have two valid cuts.

Figure 20: Four possible cases with 0 fluid vertices and 4 air vertices, where there are {0, 1, 2} edges
with two valid cuts on them. (a) No edges have two valid cuts. (b) One edge has two valid cuts.
(c) Two adjacent edges have two valid cuts. (d) Two non-adjacent edges have two valid cuts. In
all cases, edge cuts are ignored and no interface is reconstructed.

remaining two edges e12 and e34, there might be {0, 1, 2} edges with two valid cuts.
Figure 19 summarizes these situations. Notably, ambiguity arises in Figures 19c and
19d that they represent two different interface reconstructions for the same edge cut,
which cannot be distinguished based on the edge cut information alone.

Tetrahedron with 0 fluid vertices.. In this case, we have χ(v1) = χ(v2) = χ(v3) =
χ(v4) = 0, and there might be {0, 1, 2, 3, 4, 5, 6} edges that have two valid cuts on
them. No interface is reconstructed for {0, 1} edges, as shown in Figures 20a and 20b.
We will further simplify our discussion utilizing the fact that one tetrahedron edge is
adjacent to 4 other edges, and only 1 edge is non-adjacent to it. If there are 2 edges
with two valid cuts, they can be either adjacent, like Figure 20c, or non-adjacent, like
Figure 20d. In either case, there is no interface within the tetrahedron. Figure 21
discusses three different cases in which 3 edges have two valid cuts. Since an edge is
non-adjacent to only one edge in the tetrahedron, there must be two adjacent edges
in three, which we assume to be e12 and e23. The third edge may be e13 (Figure 21a),
e14 and e34, which are equivalent (Figure 21b), or e24 (Figure 21c). Only in the case

40

(a) 3 edges have two valid cuts. (b) 3 edge has two valid cuts. (c) 3 edges have two valid cuts.

Figure 21: Three possible cases with 0 fluid vertices and there are 3 edges with two valid cuts on
them. Two of them are edges e12 and e23. (a) The third edge is e13. (b) The third edge is e14, which
is equivalent to the case of e34. (c) The third edge is e24, where two interfaces are reconstructed.

of e24, an interface is shown in the tetrahedron. Next, if there are 4 edges with two
cuts each, it implies that there are 2 edges with no cuts. These two edges can either
be adjacent (Figure 22a) or non-adjacent (Figure 22b). Finally, Figures 22c and 22d
show the cases that 5 and 6 edges have two valid cuts.

Based on the above discussion, there are a total of 18 basic cases for reconstructing
the interface within a tetrahedron using edge cut information. Among these, 8 cases
will ignore some cut points, leading to geometric errors in the interface reconstruc-
tion. Additionally, if there are 2 fluid vertices and 2 edges with two valid cuts, we
encounter an ambiguity where it is not possible to determine whether it corresponds
to Figure 19c or Figure 19d. While extending the algorithm to R3 is non-trivial due
to these reasons, We anticipate addressing the aforementioned challenges in future
work.

8. Conclusion

In this paper, we proposed an Eulerian interface tracking algorithm for unstruc-
tured triangle meshes based on the triangle edge cut interface representation. We
also designed an area correction algorithm to further improve the accuracy of mass
conservation. Our interface representation method features a low level of memory us-
age that can capture sub-triangle geometric features with 6 DoFs in a triangle. The
proposed interface advection algorithm, combined with area correction, can track
the dynamic evolution of the interface on a low-cost, fully definitive basis, without
any expensive optimization process. Our algorithm handles each triangle cell in-
dependently in a parallelization-friendly manner. On different numerical tasks, it’s
proven that our method outperforms traditional VOF methods, offering a promising

41

(a) 4 edges have two valid cuts. (b) 4 edges have two valid cuts.

(c) 5 edges have two valid cuts. (d) 6 edges have two valid cuts.

Figure 22: Four possible cases with 0 fluid vertices and {4, 5, 6} edges with two valid cuts on them.
(a) 4 edges have two valid cuts and the other two adjacent edges have no valid cuts. (b) 4 edges
have two valid cuts and the other two non-adjacent edges have no valid cuts. (c) 5 edges have two
valid cuts. (d) 6 edges have two valid cuts.

approach for accurate and efficient interface tracking in complex numerical simula-
tions.

The algorithm proposed in this paper requires an unstructured triangle mesh be-
cause applying this method to a lattice grid can introduce ambiguities due to the
rectangular cells. For example, the two cases in Figure 23 have identical vertex ma-
terials and edge cuts, however exhibit different liquid polygons, leading to ambiguity.
Another limitation is that the triangle edge cut representations will smooth out sharp
corners inside triangles, producing some artifacts, which may be alleviated by adding
more vertices within the triangles. Furthermore, the use of CGAL’s exact geometry
computation slows down runtime and hinders parallelization.

In the future, we plan to address the dimensionality challenges discussed in Sec-
tion 7 and extend our proposed edge cut-based interface tracking method to 3D space.
To enhance efficiency, we aim to adopt faster floating-point geometric algorithms to
reduce the computational cost of polygon-polygon intersections and further acceler-
ate the program through parallelization. We also intend to integrate the proposed
algorithm with physical simulations to accurately model fluid phenomena with thin

42

Figure 23: Ambiguities of rectangular cell edge cut reconstruction.

structures.

9. Acknowledgment

Georgia Tech authors acknowledge NSF IIS #2433322, ECCS #2318814, CA-
REER #2433307, IIS #2106733, OISE #2433313, and CNS #1919647 for funding
support.

References

[1] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct numerical simulations of gas–
liquid multiphase flows, Cambridge university press, 2011.

[2] H. Luo, J. D. Baum, R. Löhner, On the computation of multi-material flows
using ale formulation, Journal of Computational Physics 194 (1) (2004) 304–328.

[3] J. Pan, T. Long, L. Chirco, R. Scardovelli, S. Popinet, S. Zaleski, An edge-based
interface tracking (ebit) method for multiphase-flows simulation with surface
tension, arXiv preprint arXiv:2309.00338 (2023).

[4] S. Shin, D. Juric, Modeling three-dimensional multiphase flow using a level
contour reconstruction method for front tracking without connectivity, Journal
of Computational Physics 180 (2) (2002) 427–470.

[5] S. Chen, D. B. Johnson, P. E. Raad, D. Fadda, The surface marker and micro cell
method, International Journal for Numerical Methods in Fluids 25 (7) (1997)
749–778.

[6] S. Popinet, S. Zaleski, A front-tracking algorithm for accurate representation of
surface tension, International Journal for Numerical Methods in Fluids 30 (6)
(1999) 775–793.

43

[7] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber,
J. Han, S. Nas, Y.-J. Jan, A front-tracking method for the computations of
multiphase flow, Journal of computational physics 169 (2) (2001) 708–759.

[8] S. O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompress-
ible, multi-fluid flows, Journal of computational physics 100 (1) (1992) 25–37.

[9] X. Chen, J. Lu, S. Zaleski, G. Tryggvason, Characterizing interface topology in
multiphase flows using skeletons, Physics of Fluids 34 (9) (2022).

[10] L. Chirco, J. Maarek, S. Popinet, S. Zaleski, Manifold death: a volume of fluid
implementation of controlled topological changes in thin sheets by the signature
method, Journal of Computational Physics 467 (2022) 111468.

[11] S. Osher, R. Fedkiw, K. Piechor, Level set methods and dynamic implicit sur-
faces, Appl. Mech. Rev. 57 (3) (2004) B15–B15.

[12] S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent speed:
Algorithms based on hamilton-jacobi formulations, Journal of computational
physics 79 (1) (1988) 12–49.

[13] S. Osher, R. P. Fedkiw, Level set methods: an overview and some recent results,
Journal of Computational physics 169 (2) (2001) 463–502.

[14] F. Gibou, R. Fedkiw, S. Osher, A review of level-set methods and some recent
applications, Journal of Computational Physics 353 (2018) 82–109.

[15] C. W. Hirt, B. D. Nichols, Volume of fluid (vof) method for the dynamics of
free boundaries, Journal of computational physics 39 (1) (1981) 201–225.

[16] J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling
surface tension, Journal of computational physics 100 (2) (1992) 335–354.

[17] R. M. Chiodi, Advancement of numerical methods for simulating primary at-
omization, Cornell University, 2020.

[18] W. J. Rider, D. B. Kothe, Reconstructing volume tracking, Journal of compu-
tational physics 141 (2) (1998) 112–152.

[19] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and inter-
facial flow, Annual review of fluid mechanics 31 (1) (1999) 567–603.

44

[20] S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial
flows, Journal of Computational Physics 228 (16) (2009) 5838–5866.

[21] E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, Interface reconstruction with
least-squares fit and split advection in three-dimensional cartesian geometry,
Journal of Computational Physics 225 (2) (2007) 2301–2319.

[22] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid inter-
face tracking with smoothed surface stress methods for three-dimensional flows,
Journal of Computational physics 152 (2) (1999) 423–456.

[23] R. DeBar, Fundamentals of the kraken code, Technical Report UCIR-760 (1974).

[24] J. Lopez, J. Hernandez, P. Gomez, F. Faura, An improved plic-vof method
for tracking thin fluid structures in incompressible two-phase flows, Journal of
Computational Physics 208 (1) (2005) 51–74.

[25] C. Mulbah, C. Kang, N. Mao, W. Zhang, A. R. Shaikh, S. Teng, A review of
vof methods for simulating bubble dynamics, Progress in Nuclear Energy 154
(2022) 104478.

[26] T. Marić, D. B. Kothe, D. Bothe, Unstructured un-split geometrical volume-of-
fluid methods–a review, Journal of Computational Physics 420 (2020) 109695.

[27] Q. Zhang, P. L.-F. Liu, A new interface tracking method: The polygonal area
mapping method, Journal of Computational Physics 227 (8) (2008) 4063–4088.

[28] J. E. Pilliod Jr, E. G. Puckett, Second-order accurate volume-of-fluid algorithms
for tracking material interfaces, Journal of Computational Physics 199 (2) (2004)
465–502.

[29] J. López, J. Hernández, P. Gómez, F. Faura, A volume of fluid method based
on multidimensional advection and spline interface reconstruction, Journal of
Computational Physics 195 (2) (2004) 718–742.

[30] R. Comminal, J. Spangenberg, J. H. Hattel, Cellwise conservative unsplit ad-
vection for the volume of fluid method, Journal of computational physics 283
(2015) 582–608.

[31] C. B. Ivey, P. Moin, Conservative and bounded volume-of-fluid advection on
unstructured grids, Journal of Computational Physics 350 (2017) 387–419.

45

[32] V. Dyadechko, M. Shashkov, Moment-of-fluid interface reconstruction, Los
Alamos Report LA-UR-05-7571 (2005) 49.

[33] A. A. Mukundan, T. Ménard, J. C. B. de Motta, A. Berlemont, A 3d moment
of fluid method for simulating complex turbulent multiphase flows, Computers
& Fluids 198 (2020) 104364.

[34] H. Anbarlooei, K. Mazaheri, Moment of fluid interface reconstruction method
in multi-material arbitrary lagrangian eulerian (mmale) algorithms, Computer
methods in applied mechanics and engineering 198 (47-48) (2009) 3782–3794.

[35] M. Shashkov, E. Kikinzon, Moments-based interface reconstruction, remap and
advection, Journal of Computational Physics 479 (2023) 111998.

[36] M. Cutforth, P. T. Barton, N. Nikiforakis, An efficient moment-of-fluid interface
tracking method, Computers & Fluids 224 (2021) 104964.

[37] H. T. Ahn, M. Shashkov, Adaptive moment-of-fluid method, Journal of Com-
putational Physics 228 (8) (2009) 2792–2821.

[38] J. Nocedal, S. J. Wright, Numerical optimization, Springer, 1999.

[39] Q. Zhang, P. L.-F. Liu, Hypam: A hybrid continuum-particle model for incom-
pressible free-surface flows, Journal of Computational Physics 228 (4) (2009)
1312–1342.

[40] Q. Zhang, A. Fogelson, Fourth-order interface tracking in two dimensions via
an improved polygonal area mapping method, SIAM Journal on Scientific Com-
puting 36 (5) (2014) A2369–A2400.

[41] P. Karnakov, S. Litvinov, P. Koumoutsakos, A hybrid particle volume-of-fluid
method for curvature estimation in multiphase flows, International Journal of
Multiphase Flow 125 (2020) 103209.

[42] L. Chirco, S. Zaleski, An edge-based interface-tracking method for multiphase
flows, International Journal for Numerical Methods in Fluids 95 (3) (2023) 491–
497.

[43] T. C. Hales, Jordan’s proof of the jordan curve theorem, Studies in logic, gram-
mar and rhetoric 10 (23) (2007) 45–60.

46

[44] J. R. Shewchuk, Triangle: Engineering a 2d quality mesh generator and delaunay
triangulator, in: Workshop on applied computational geometry, Springer, 1996,
pp. 203–222.

[45] J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation,
Computational geometry 22 (1-3) (2002) 21–74.

[46] K. Crane, Discrete differential geometry: An applied introduction, Notices of
the AMS, Communication 1153 (2018).

[47] M. Owkes, O. Desjardins, A mass and momentum conserving unsplit semi-
lagrangian framework for simulating multiphase flows, Journal of Computational
Physics 332 (2017) 21–46.

[48] S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for
fluids, Journal of computational physics 31 (3) (1979) 335–362.

[49] M. Rudman, Volume-tracking methods for interfacial flow calculations, Interna-
tional journal for numerical methods in fluids 24 (7) (1997) 671–691.

[50] B. Xie, F. Xiao, Toward efficient and accurate interface capturing on arbitrary
hybrid unstructured grids: The thinc method with quadratic surface represen-
tation and gaussian quadrature, Journal of Computational Physics 349 (2017)
415–440.

[51] P. K. Smolarkiewicz, The multi-dimensional crowley advection scheme, Mon.
Wea. Rev 110 (12) (1982) 1968–1983.

[52] F. Xiao, Y. Honma, T. Kono, A simple algebraic interface capturing scheme
using hyperbolic tangent function, International journal for numerical methods
in fluids 48 (9) (2005) 1023–1040.

[53] P. Alliez, A. Fabri, Cgal: the computational geometry algorithms library, in:
ACM SIGGRAPH 2016 Courses, 2016, pp. 1–8.

[54] T. Bartels, V. Fisikopoulos, Fast robust arithmetics for geometric algorithms
and applications to gis, The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 46 (2021) 1–8.

[55] Y. Wang, C. Jiang, C. A. Schroeder, J. Teran, An adaptive virtual node al-
gorithm with robust mesh cutting., in: Symposium on Computer Animation,
Vol. 77, 2014, p. 85.

47

[56] M. de Matos Menezes, S. V. G. Magalhães, W. R. Franklin, M. A. de Oliveira,
R. E. B. Chichorro, Accelerating the exact evaluation of geometric predicates
with gpus, 28th International Meshing Roundtable, Buffalo, NY, USA 16 (2019).

[57] R. Chandra, Parallel programming in OpenMP, Morgan kaufmann, 2001.

[58] M. Voss, R. Asenjo, J. Reinders, Pro TBB: C++ parallel programming with
threading building blocks, Vol. 295, Springer, 2019.

48

	Introduction
	Triangle Edge Cut Interface Representation
	Interface Advection
	Area Correction
	Additional Vertex for Case 2
	Edge Cut Correction

	Implementation
	Experiments
	Static Reconstruction
	Rider–Kothe Reversed Single Vortex
	Zalesak's Disk
	Deformation Field
	Time Cost

	Discussion on 3D Extension
	Extending to 3D Space

	Conclusion
	Acknowledgment

